STRINGSTRING
CYC2 protein (Saccharomyces cerevisiae) - STRING interaction network
"CYC2" - Mitochondrial peripheral inner membrane protein, contains a FAD cofactor in a domain exposed in the intermembrane space in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CYC2Mitochondrial peripheral inner membrane protein, contains a FAD cofactor in a domain exposed in the intermembrane space; exhibits redox activity in vitro; likely participates in ligation of heme to acytochromes c and c1 (Cyc1p and Cyt1p); Redox component that participates in c-type cytochrome biogenesis in the mitochondrial intermembrane space. May play a role in the reduction of heme prior to its ligation to apocytochrome c by cytochrome c heme lyase. Has oxidoreductase activity in vitro (366 aa)    
Predicted Functional Partners:
CYC3
Cytochrome c heme lyase (holocytochrome c synthase), attaches heme to apo-cytochrome c (Cyc1p or Cyc7p) in the mitochondrial intermembrane space; human ortholog may have a role in microphthalmia with linear skin defects (MLS); Links covalently the heme group to the apoprotein of cytochrome c (269 aa)
     
 
  0.968
URA1
Dihydroorotate dehydrogenase, catalyzes the fourth enzymatic step in the de novo biosynthesis of pyrimidines, converting dihydroorotic acid into orotic acid; Catalyzes the conversion of dihydroorotate to orotate with fumarate as the electron acceptor. Molecular oxygen can replace fumarate in vitro. Does not use oxaloacetate or NAD or NADP as electron acceptors (314 aa)
     
  0.951
GLT1
NAD(+)-dependent glutamate synthase (GOGAT), synthesizes glutamate from glutamine and alpha-ketoglutarate; with Gln1p, forms the secondary pathway for glutamate biosynthesis from ammonia; expression regulated by nitrogen source; Forms L-glutamate from L-glutamine and 2-oxoglutarate. Represents an alternative pathway to L-glutamate dehydrogenase for the biosynthesis of L-glutamate. Participates with glutamine synthetase in ammonia assimilation processes. The enzyme is specific for NADH, L-glutamine and 2-oxoglutarate (2145 aa)
   
 
  0.923
URA2
Bifunctional carbamoylphosphate synthetase/aspartate transcarbamylase; catalyzes the first two enzymatic steps in the de novo biosynthesis of pyrimidines; both activities are subject to feedback inhibition by UTP; This protein is a "fusion" protein encoding three enzymatic activities of the pyrimidine pathway (GATase, CPSase, and ATCase) (2214 aa)
   
 
  0.902
MET5
Sulfite reductase beta subunit, involved in amino acid biosynthesis, transcription repressed by methionine; Catalyzes the reduction of sulfite to sulfide, one of several activities required for the biosynthesis of L-cysteine from sulfate (1442 aa)
   
 
  0.875
ARH1
Oxidoreductase of the mitochondrial inner membrane, involved in cytoplasmic and mitochondrial iron homeostasis and required for activity of Fe-S cluster-containing enzymes; one of the few mitochondrial proteins essential for viability (493 aa)
   
 
  0.842
CYT2
Cytochrome c1 heme lyase, involved in maturation of cytochrome c1, which is a subunit of the mitochondrial ubiquinol-cytochrome-c reductase; links heme covalently to apocytochrome c1; Involved in the final maturation of cytochrome c1, it links covalently the heme group to the apoprotein (224 aa)
     
 
  0.798
CYC7
Cytochrome c isoform 2, expressed under hypoxic conditions; electron carrier of the mitochondrial intermembrane space that transfers electrons from ubiquinone-cytochrome c oxidoreductase to cytochrome c oxidase during cellular respiration; Electron carrier protein. The oxidized form of the cytochrome c heme group can accept an electron from the heme group of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this electron to the cytochrome oxidase complex, the final protein carrier in the mitochondrial electron-transport chain (113 aa)
     
 
  0.791
CYT1
Cytochrome c1, component of the mitochondrial respiratory chain; expression is regulated by the heme-activated, glucose-repressed Hap2p/3p/4p/5p CCAAT-binding complex; Heme-containing component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c (309 aa)
     
 
  0.757
URA10
Minor orotate phosphoribosyltransferase (OPRTase) isozyme that catalyzes the fifth enzymatic step in the de novo biosynthesis of pyrimidines, converting orotate into orotidine-5’-phosphate; major OPRTase encoded by URA5; Catalyzes the transfer of a ribosyl phosphate group from 5-phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP) (227 aa)
       
  0.756
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (7%) [HD]