STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
GLO4Hydroxyacylglutathione hydrolase, mitochondrial; Mitochondrial glyoxalase II; catalyzes the hydrolysis of S-D-lactoylglutathione into glutathione and D-lactate; GLO4 has a paralog, GLO2, that arose from the whole genome duplication. (285 aa)    
Predicted Functional Partners:
GLO1
Lactoylglutathione lyase; Monomeric glyoxalase I; catalyzes the detoxification of methylglyoxal (a by-product of glycolysis) via condensation with glutathione to produce S-D-lactoylglutathione; expression regulated by methylglyoxal levels and osmotic stress.
  
 
 0.999
GLO2
Hydroxyacylglutathione hydrolase, cytoplasmic isozyme; Cytoplasmic glyoxalase II; catalyzes the hydrolysis of S-D-lactoylglutathione into glutathione and D-lactate; GLO2 has a paralog, GLO4, that arose from the whole genome duplication.
  
0.975
DLD2
D-2-hydroxyglutarate--pyruvate transhydrogenase DLD2; D-2-hydroxyglutarate dehydrogenase, and minor D-lactate dehydrogenase; mitochondrial matrix protein that oxidizes D-2-hydroxyglutarate (D-2HG), an oncometabolite, to alpha-ketoglutarate with a minor role in lactate catabolism; located in the mitochondrial matrix; Belongs to the FAD-binding oxidoreductase/transferase type 4 family.
    
 0.970
DLD3
D-2-hydroxyglutarate--pyruvate transhydrogenase DLD3; 2-hydroxyglutarate transhydrogenase, and minor D-lactate dehydrogenase; converts D-2-hydroxyglutarate (D-2HG), an oncometabolite, to alpha-ketoglutarate in the presence of FAD, with concomitant reduction of pyruvate to D-lactate; minor lactate dehydrogenase activity; component of the retrograde regulon that consists of genes whose expression are stimulated by damage to mitochondria and reduced in cells grown with glutamate as the sole nitrogen source; located in the cytoplasm.
    
 0.964
DLD1
Major mitochondrial D-lactate dehydrogenase; oxidizes D-lactate to pyruvate, transcription is heme-dependent, repressed by glucose, and derepressed in ethanol or lactate; located in the mitochondrial inner membrane.
  
 
 0.961
HSP31
Glutathione-independent glyoxalase HSP31; Methylglyoxalase that converts methylglyoxal to D-lactate; involved in oxidative stress resistance, diauxic shift, and stationary phase survival; has similarity to E. coli Hsp31 and C. albicans Glx3p; member of the DJ-1/ThiJ/PfpI superfamily, which includes human DJ-1 involved in Parkinson's disease and cancer; exists as a dimer and contains a putative metal-binding site; protein abundance increases in response to DNA replication stress; Belongs to the peptidase C56 family. HSP31-like subfamily.
   
 
 0.950
HSP32
Probable glutathione-independent glyoxalase HSP32; Possible chaperone and cysteine protease; required for transcriptional reprogramming during the diauxic shift and for survival in stationary phase; similar to E. coli Hsp31 and S. cerevisiae Hsp31p, Hsp33p, and Sno4p; member of the DJ-1/ThiJ/PfpI superfamily, which includes human DJ-1 involved in Parkinson's disease and cancer; Belongs to the peptidase C56 family. HSP31-like subfamily.
   
 
 0.910
SNO4
Probable glutathione-independent glyoxalase SNO4; Possible chaperone and cysteine protease; required for transcriptional reprogramming during the diauxic shift and for survival in stationary phase; similar to bacterial Hsp31 and yeast Hsp31p, Hsp32p, and Hsp33p; DJ-1/ThiJ/PfpI superfamily member; predicted involvement in pyridoxine metabolism; induced by mild heat stress and copper deprivation.
   
 
 0.907
HSP33
Probable glutathione-independent glyoxalase HSP33; Possible chaperone and cysteine protease; required for transcriptional reprogramming during the diauxic shift and for survival in stationary phase; similar to E. coli Hsp31 and S. cerevisiae Hsp31p, Hsp32p, and Sno4p; member of the DJ-1/ThiJ/PfpI superfamily, which includes human DJ-1 involved in Parkinson's disease and cancer; Belongs to the peptidase C56 family. HSP31-like subfamily.
   
 
  0.905
ACP1
Mitochondrial matrix acyl carrier protein; involved in biosynthesis of octanoate, which is a precursor to lipoic acid; activated by phosphopantetheinylation catalyzed by Ppt2p.
   
 
 0.683
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: medium (64%) [HD]