STRINGSTRING
CMR2 protein (Saccharomyces cerevisiae) - STRING interaction network
"CMR2" - Putative protein of unknown function in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CMR2Putative protein of unknown function; deletion causes sensitivity to unfolded protein response-inducing agents (1648 aa)    
Predicted Functional Partners:
CMR3
Putative zinc finger protein; YPR013C is not an essential gene (317 aa)
     
   
  0.923
FAS1
Beta subunit of fatty acid synthetase, which catalyzes the synthesis of long-chain saturated fatty acids; contains acetyltransacylase, dehydratase, enoyl reductase, malonyl transacylase, and palmitoyl transacylase activities; Fatty acid synthetase catalyzes the formation of long- chain fatty acids from acetyl-CoA, malonyl-CoA and NADPH. The beta subunit contains domains for- [acyl-carrier-protein] acetyltransferase and malonyltransferase, S-acyl fatty acid synthase thioesterase, enoyl-[acyl-carrier-protein] reductase, and 3-hydroxypalmitoyl-[acyl-carrier-protein] dehydratase (2051 aa)
   
 
  0.835
POX1
Fatty-acyl coenzyme A oxidase, involved in the fatty acid beta-oxidation pathway; localized to the peroxisomal matrix (748 aa)
   
 
  0.824
ACC1
Acetyl-CoA carboxylase, biotin containing enzyme that catalyzes the carboxylation of acetyl-CoA to form malonyl-CoA; required for de novo biosynthesis of long-chain fatty acids; Carries out three functions- biotin carboxyl carrier protein, biotin carboxylase and carboxyltransferase. Involved in the synthesis of very-long-chain fatty acid synthesis which is required to maintain a functional nuclear envelope. Required for acylation and vacuolar membrane association of VAC8 which is necessary to maintain a normal morphology of the vacuole (2233 aa)
   
 
  0.821
HFA1
Mitochondrial acetyl-coenzyme A carboxylase, catalyzes the production of malonyl-CoA in mitochondrial fatty acid biosynthesis; Catalyzes the rate-limiting reaction in the mitochondrial fatty acid synthesis (FAS) type II pathway. Responsible for the production of the mitochondrial malonyl-CoA, used for the biosynthesis of the cofactor lipoic acid. This protein carries three functions- biotin carboxyl carrier protein, biotin carboxylase, and carboxyltransferase (2123 aa)
   
 
  0.816
FAS2
Alpha subunit of fatty acid synthetase, which catalyzes the synthesis of long-chain saturated fatty acids; contains the acyl-carrier protein domain and beta-ketoacyl reductase, beta-ketoacyl synthase and self-pantetheinylation activities; Fatty acid synthetase catalyzes the formation of long- chain fatty acids from acetyl-CoA, malonyl-CoA and NADPH. The alpha subunit contains domains for- acyl carrier protein, 3- oxoacyl-[acyl-carrier-protein] reductase, and 3-oxoacyl-[acyl- carrier-protein] synthase. This subunit coordinates the binding of the six beta subunits to the enzyme complex (1887 aa)
       
  0.813
ERG10
Acetyl-CoA C-acetyltransferase (acetoacetyl-CoA thiolase), cytosolic enzyme that transfers an acetyl group from one acetyl-CoA molecule to another, forming acetoacetyl-CoA; involved in the first step in mevalonate biosynthesis; Catalyzes the formation of acetoacetyl-CoA in the biosynthesis of mevalonate, an intermediate required for the biosynthesis of sterols and nonsterol isoprenoids (398 aa)
   
 
  0.803
POT1
3-ketoacyl-CoA thiolase with broad chain length specificity, cleaves 3-ketoacyl-CoA into acyl-CoA and acetyl-CoA during beta-oxidation of fatty acids (417 aa)
   
 
  0.803
DUR1,2
Urea amidolyase, contains both urea carboxylase and allophanate hydrolase activities, degrades urea to CO2 and NH3; expression sensitive to nitrogen catabolite repression and induced by allophanate, an intermediate in allantoin degradation; Hydrolysis of urea to ammonia and CO(2) (1835 aa)
   
 
  0.791
DCI1
Peroxisomal protein; identification as a delta(3,5)-delta(2,4)-dienoyl-CoA isomerase involved in fatty acid metabolism is disputed; Converts 3,5-dienoyl-CoAs to the corresponding 2,4- dienoyl-CoAs. Involved in fatty acid metabolism. Required for ECI1 to be peroxisomal located (271 aa)
   
  0.765
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (17%) [HD]