STRINGSTRING
ALE1 protein (Saccharomyces cerevisiae) - STRING interaction network
"ALE1" - Broad-specificity lysophospholipid acyltransferase, part of MBOAT family of membrane-bound O-acyltransferases in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ALE1Broad-specificity lysophospholipid acyltransferase, part of MBOAT family of membrane-bound O-acyltransferases; key component of Lands cycle; may have role in fatty acid exchange at sn-2 position of mature glycerophospholipids; Membrane-bound O-acyltransferase that mediates the incorporation of unsaturated acyl chains into the sn-2 position of phospholipids. Preferentially acylates lysophosphocholine, but also lysophosphoethanolamine and lysophosphatidylglycerol (619 aa)    
Predicted Functional Partners:
PSD2
Phosphatidylserine decarboxylase of the Golgi and vacuolar membranes, converts phosphatidylserine to phosphatidylethanolamine; Catalyzes the formation of phosphatidylethanolamine (PtdEtn) from phosphatidylserine (PtdSer). Plays a central role in phospholipid metabolism and in the interorganelle trafficking of phosphatidylserine (PubMed-7890740, PubMed-7890739, PubMed-24366873). Phosphatidylethanolamine produced by PSD2 is insufficient to completely provide the PtdEtn pool required by mitochondria under respiratory conditions (PubMed-11294902). PSD2 is also involved in the PtdSer transp [...] (1138 aa)
     
  0.985
PSD1
Phosphatidylserine decarboxylase of the mitochondrial inner membrane, converts phosphatidylserine to phosphatidylethanolamine; Catalyzes the formation of phosphatidylethanolamine (PtdEtn) from phosphatidylserine (PtdSer). Plays a central role in phospholipid metabolism and in the interorganelle trafficking of phosphatidylserine (PubMed-8227017, PubMed-8407984, PubMed-17976194, PubMed-23124206, PubMed-25829489). Phosphatidylethanolamine formed in the mitochondria is exported to other membranes to fullfill their requirements for PtdEtn (PubMed-8530379, PubMed-11294902). Required for norm [...] (500 aa)
     
  0.983
LRO1
Acyltransferase that catalyzes diacylglycerol esterification; one of several acyltransferases that contribute to triglyceride synthesis; putative homolog of human lecithin cholesterol acyltransferase; Triacylglycerol formation by an acyl-CoA independent pathway. The enzyme specifically transfers acyl groups from the sn-2 position of a phospholipid to diacylglycerol, thus forming an sn-1-lysophospholipid (661 aa)
         
  0.982
SLC1
1-acyl-sn-glycerol-3-phosphate acyltransferase, catalyzes the acylation of lysophosphatidic acid to form phosphatidic acid, a key intermediate in lipid metabolism; enzymatic activity detected in lipid particles and microsomes; May be an acyltransferase with an altered substrate specificity that enables it to use a C-26-CoA in place of the C-16 or C-18-CoAs used by the wild-type protein (303 aa)
     
  0.976
CHO2
Phosphatidylethanolamine methyltransferase (PEMT), catalyzes the first step in the conversion of phosphatidylethanolamine to phosphatidylcholine during the methylation pathway of phosphatidylcholine biosynthesis; Catalyzes the first step in the conversion of phosphatidylethanolamine to phosphatidylcholine during the methylation pathway of phosphatidylcholine biosynthesis. Preferentially converts di-C16-1 substrates (869 aa)
       
  0.976
OPI3
Phospholipid methyltransferase (methylene-fatty-acyl-phospholipid synthase), catalyzes the last two steps in phosphatidylcholine biosynthesis; Catalyzes three sequential methylation reactions of phosphatidylethanolamine (PE) by AdoMet, thereby producing phosphatidylcholine (PC) (206 aa)
       
  0.975
SCT1
Glycerol 3-phosphate/dihydroxyacetone phosphate dual substrate-specific sn-1 acyltransferase of the glycerolipid biosynthesis pathway, prefers 16-carbon fatty acids, similar to Gpt2p, gene is constitutively transcribed; G-3-P/dihydroxyacetone phosphate dual substrate-specific sn-1 acyltransferase (759 aa)
     
  0.971
GPT2
Glycerol-3-phosphate/dihydroxyacetone phosphate dual substrate-specific sn-1 acyltransferase located in lipid particles and the ER; involved in the stepwise acylation of glycerol-3-phosphate and dihydroxyacetone in lipid biosynthesis; G-3-P/dihydroxyacetone phosphate dual substrate-specific sn-1 acyltransferase (743 aa)
     
  0.971
CPT1
Cholinephosphotransferase, required for phosphatidylcholine biosynthesis and for inositol-dependent regulation of EPT1 transcription; Catalyzes the final step in the CDP-choline route leading to phosphatidylcholin (PC). Preferentially uses CDP- monomethylethanolamine as aminoalcohol substrate. Shows highest activity toward di- and mono-unsaturated diacylglycerol species as lipid substrates. The CDP-choline pathway only contributes to net PC synthesis if exogenous choline is present. In its absence, this pathway recycles choline from PC turnover and may contribute to maintaining the pro [...] (393 aa)
         
  0.969
TAZ1
Lyso-phosphatidylcholine acyltransferase, required for normal phospholipid content of mitochondrial membranes; may remodel acyl groups of cardiolipin in the inner membrane; human ortholog tafazzin is implicated in Barth syndrome; Acyltransferase which mediates the conversion of 1-acyl- sn-glycero-3-phosphocholine (LPC) into phosphatidylcholine (PC). Displays a broad LPC fatty acyl chain substrate specificity utilizing LPC molecules ranging in length from C-10 to C-20. Does not utilize other lysolipids than LPC as acceptor. Also shows acyl-CoA-independent acyltransferase activity. Requi [...] (381 aa)
         
  0.968
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (9%) [HD]