STRINGSTRING
SYC1 protein (Saccharomyces cerevisiae) - STRING interaction network
"SYC1" - Subunit of the APT subcomplex of cleavage and polyadenylation factor, may have a role in 3' end formation of both polyadenylated and non-polyadenylated RNAs in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SYC1Subunit of the APT subcomplex of cleavage and polyadenylation factor, may have a role in 3’ end formation of both polyadenylated and non-polyadenylated RNAs; Component of the cleavage and polyadenylation factor (CPF) complex, which plays a key role in polyadenylation-dependent pre-mRNA 3’-end formation and cooperates with cleavage factors including the CFIA complex and NAB4/CFIB. Component of the APT complex, which may be involved in polyadenylation-independent transcript 3’-end formation, including snoRNAs and snRNAs (188 aa)    
Predicted Functional Partners:
REF2
RNA-binding protein involved in the cleavage step of mRNA 3’-end formation prior to polyadenylation, and in snoRNA maturation; part of holo-CPF subcomplex APT, which associates with 3’-ends of snoRNA- and mRNA-encoding genes; RNA-binding component of the cleavage and polyadenylation factor (CPF) complex, which plays a key role in polyadenylation-dependent pre-mRNA 3’-end formation and cooperates with cleavage factors including the CFIA complex and NAB4/CFIB. Negative regulator of poly(A) synthesis. Component of the APT complex, which may be involved in polyadenylation-independent trans [...] (533 aa)
       
  0.996
SWD2
Subunit of the COMPASS (Set1C) complex, which methylates histone H3 on lys 4 and is involved in telomeric silencing; subunit of CPF (cleavage and polyadenylation factor), a complex involved in RNAP II transcription termination; The COMPASS (Set1C) complex specifically mono-, di- and trimethylates histone H3 to form H3K4me1/2/3, which subsequently plays a role in telomere length maintenance and transcription elongation regulation (329 aa)
       
  0.996
SSU72
Transcription/RNA-processing factor that associates with TFIIB and cleavage/polyadenylation factor Pta1p; exhibits phosphatase activity on serine-5 of the RNA polymerase II C-terminal domain; affects start site selection in vivo; Component of the cleavage and polyadenylation factor (CPF) complex, which plays a key role in polyadenylation-dependent pre-mRNA 3’-end formation and cooperates with cleavage factors including the CFIA complex and NAB4/CFIB. Component of the APT complex, which may be involved in polyadenylation-independent transcript 3’-end formation. SSU72 is required for 3’- [...] (206 aa)
       
  0.995
PTI1
Essential protein that is a component of CPF (cleavage and polyadenylation factor); involved in 3’ end formation of snoRNA and mRNA; interacts directly with Pta1p; has similarity to mammalian Cleavage-Stimulation Factor CstF-64; Component of the cleavage and polyadenylation factor (CPF) complex, which plays a key role in polyadenylation-dependent pre-mRNA 3’-end formation and cooperates with cleavage factors including the CFIA complex and NAB4/CFIB. Component of the APT complex, which may be involved in polyadenylation-independent transcript 3’-end formation. PTI1 is required for 3’-en [...] (425 aa)
       
  0.995
PTA1
Subunit of holo-CPF, a multiprotein complex and functional homolog of mammalian CPSF, required for the cleavage and polyadenylation of mRNA and snoRNA 3’ ends; involved in pre-tRNA processing; binds to the phosphorylated CTD of RNAPII; Essential in pre-tRNA processing. Component of the cleavage and polyadenylation factor (CPF) complex, which plays a key role in polyadenylation-dependent pre-mRNA 3’-end formation and cooperates with cleavage factors including the CFIA complex and NAB4/CFIB. Component of the APT complex, which may be involved in polyadenylation-independent transcript 3’- [...] (785 aa)
       
  0.994
GLC7
Type 1 serine/threonine protein phosphatase catalytic subunit, involved in many processes (eg- glycogen metabolism, sporulation, mitosis); accumulates at mating projections by interaction with Afr1p; interacts with many regulatory subunits; Involved in control of glycogen metabolism, meiosis, translation, chromosome segregation, cell polarity and G2/M cell cycle progression. PP1 may act in opposition to the IPL1 protein kinase in regulating chromosome segregation by dephosphorylating H3S10ph. The BUD14-GLC7 complex is necessary to regulate microtubule dynamics at the cortex and may fun [...] (312 aa)
       
  0.985
CFT2
Subunit of the mRNA cleavage and polyadenlylation factor (CPF); required for pre-mRNA cleavage, polyadenylation and poly(A) site recognition, 43% similarity with the mammalian CPSF-100 protein; RNA-binding component of the cleavage and polyadenylation factor (CPF) complex, which plays a key role in polyadenylation-dependent pre-mRNA 3’-end formation and cooperates with cleavage factors including the CFIA complex and NAB4/CFIB. May be involved in poly(A)-site recognition. May be involved in the association of the CPF, CPFIA and RNA polymerase II complexes (859 aa)
         
  0.973
YTH1
Essential RNA-binding component of cleavage and polyadenylation factor, contains five zinc fingers; required for pre-mRNA 3’-end processing and polyadenylation; RNA-binding component of the cleavage and polyadenylation factor (CPF) complex, which plays a key role in polyadenylation-dependent pre-mRNA 3’-end formation and cooperates with cleavage factors including the CFIA complex and NAB4/CFIB (208 aa)
         
  0.972
PFS2
Integral subunit of the pre-mRNA cleavage and polyadenylation factor (CPF) complex; plays an essential role in mRNA 3’-end formation by bridging different processing factors and thereby promoting the assembly of the processing complex; Integral and essential component of the cleavage and polyadenylation factor (CPF) complex, which plays a key role in polyadenylation-dependent pre-mRNA 3’-end formation and cooperates with cleavage factors including the CFIA complex and NAB4/CFIB. May bridge the CPF and CFIA complexes (465 aa)
         
  0.971
CFT1
RNA-binding subunit of the mRNA cleavage and polyadenylation factor; involved in poly(A) site recognition and required for both pre-mRNA cleavage and polyadenylation, 51% sequence similarity with mammalian AAUAA-binding subunit of CPSF; RNA-binding component of the cleavage and polyadenylation factor (CPF) complex, which plays a key role in polyadenylation-dependent pre-mRNA 3’-end formation and cooperates with cleavage factors including the CFIA complex and NAB4/CFIB. Involved in poly(A) site recognition. May be involved in coupling transcription termination and mRNA 3’-end formation (1357 aa)
         
  0.971
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (7%) [HD]