STRINGSTRING
NOC2 protein (Saccharomyces cerevisiae) - STRING interaction network
"NOC2" - Protein that forms a nucleolar complex with Mak21p that binds to 90S and 66S pre-ribosomes, as well as a nuclear complex with Noc3p that binds to 66S pre-ribosomes in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
NOC2Protein that forms a nucleolar complex with Mak21p that binds to 90S and 66S pre-ribosomes, as well as a nuclear complex with Noc3p that binds to 66S pre-ribosomes; both complexes mediate intranuclear transport of ribosomal precursors; Involved in the intranuclear transport of ribosomal precursors (710 aa)    
Predicted Functional Partners:
MAK21
Constituent of 66S pre-ribosomal particles, required for large (60S) ribosomal subunit biogenesis; involved in nuclear export of pre-ribosomes; required for maintenance of dsRNA virus; homolog of human CAATT-binding protein; Required for 60S ribosomal subunit synthesis (1025 aa)
     
  0.999
NOC3
Protein that forms a nuclear complex with Noc2p that binds to 66S ribosomal precursors to mediate their intranuclear transport; also binds to chromatin to promote the association of DNA replication factors and replication initiation; Required for synthesis of 60S ribosomal subunits and the transport of pre-ribosomes from the nucleoplasm to the cytoplasm. Also required for initiation of DNA replication. May function downstream of the origin recognition complex (ORC complex) in the loading of CDC6 and the minichromosome maintenance complex (MCM complex) onto chromatin during the G1 phase [...] (663 aa)
     
  0.999
NOP7
Component of several different pre-ribosomal particles; forms a complex with Ytm1p and Erb1p that is required for maturation of the large ribosomal subunit; required for exit from G<sub>0</sub> and the initiation of cell proliferation; Component of the NOP7 complex, which is required for maturation of the 25S and 5.8S ribosomal RNAs and formation of the 60S ribosome (605 aa)
     
 
  0.999
NOP2
Probable RNA m(5)C methyltransferase, essential for processing and maturation of 27S pre-rRNA and large ribosomal subunit biogenesis; localized to the nucleolus; constituent of 66S pre-ribosomal particles; S-adenosyl-L-methionine-dependent methyltransferase that specifically methylates the C(5) position of cytosine 2870 (m5C2870) in 25S rRNA. Required for 60S ribosomal subunit synthesis and processing (618 aa)
     
 
  0.999
NOG1
Putative GTPase; associates with free 60S ribosomal subunits in the nucleolus and is required for 60S ribosomal subunit biogenesis; constituent of 66S pre-ribosomal particles; member of the ODN family of nucleolar G-proteins; Involved in the biogenesis of the 60S ribosomal subunit (647 aa)
     
 
  0.999
EBP2
Required for 25S rRNA maturation and 60S ribosomal subunit assembly; localizes to the nucleolus and in foci along nuclear periphery; constituent of 66S pre-ribosomal particles; cooperates with Rrs1p and Mps3p to mediate telomere clustering by bindin /.../p, but is not involved in telomere tethering; Required for the processing of the 27S pre-rRNA. Probably involved in the step of the processing of the 27 SA precursor into the 27 SB intermediate (427 aa)
     
 
  0.999
NOP15
Constituent of 66S pre-ribosomal particles, involved in 60S ribosomal subunit biogenesis; localizes to both nucleolus and cytoplasm; Involved in the biogenesis of the 60S ribosomal subunit. Required for pre-rRNA processing and cytokinesis. Associates with the precursors of the 25S and 5.8S rRNAs (220 aa)
     
 
  0.999
DBP9
ATP-dependent RNA helicase of the DEAD-box family involved in biogenesis of the 60S ribosomal subunit; ATP-binding RNA helicase involved in the biogenesis of 60S ribosomal subunits and is required for the normal formation of 25S and 5.8S rRNAs (594 aa)
     
 
  0.999
MRT4
Protein involved in mRNA turnover and ribosome assembly, localizes to the nucleolus; Component of the ribosome assembly machinery. Nuclear paralog of the ribosomal protein P0, it binds pre-60S subunits at an early stage of assembly in the nucleolus, and is replaced by P0 in cytoplasmic pre-60S subunits and mature 80S ribosomes (236 aa)
     
 
  0.999
PUF6
Pumilio-homology domain protein that binds the 3’ UTR of ASH1 mRNA and represses its translation, resulting in proper asymmetric localization of ASH1 mRNA; also co-sediments with the 60S ribosomal subunit and is required for its biogenesis; RNA-binding protein involved in post-transcriptional regulation. Component of the ASH1 mRNP which transports the ASH1 mRNA to the distal tip of the bud, where the ASH1 protein is translated and targeted to the daughter cell nucleus. Binds to the ASH1 3’-UTR containing the PUF consensus UUGU segment and represses its translation. This silencing of AS [...] (656 aa)
     
      0.999
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (5%) [HD]