STRINGSTRING
WTM2 protein (Saccharomyces cerevisiae) - STRING interaction network
"WTM2" - Transcriptional modulator involved in regulation of meiosis, silencing, and expression of RNR genes in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
WTM2Transcriptional modulator involved in regulation of meiosis, silencing, and expression of RNR genes; involved in response to replication stress; contains WD repeats; Transcriptional modulator with roles in meiotic regulation and silencing (467 aa)    
Predicted Functional Partners:
RNR2
Ribonucleotide-diphosphate reductase (RNR), small subunit; the RNR complex catalyzes the rate-limiting step in dNTP synthesis and is regulated by DNA replication and DNA damage checkpoint pathways via localization of the small subunits; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. RNR2 provides the diiron-tyrosyl radical center (399 aa)
       
 
  0.819
SAS5
Subunit of the SAS complex (Sas2p, Sas4p, Sas5p); acetylates free histones and nucleosomes and regulates transcriptional silencing; stimulates Sas2p HAT activity; Component of the SAS complex, a multiprotein complex that acetylates ’Lys-16’ of histone H4 and ’Lys-14’ of histone H3. The SAS complex is however unable to acetylate nucleosomal histones. The complex is involved in transcriptional silencing at telomeres and at HML locus. Also involved in rDNA silencing. In the complex, SAS5 is required for maximal histone acetyltransferase (HAT) activity of the complex, suggesting that it ma [...] (248 aa)
       
      0.782
YOR283W
Phosphatase with a broad substrate specificity and some similarity to GPM1/YKL152C, a phosphoglycerate mutase; YOR283W is not an essential gene; Metal-independent phosphatase active against a broad range of phosphorylated substrates including nucleoside tri- and diphosphates, phosphorylated organic acids, and amino acids. Shows no activity against phytic acid, phosphorylated carbohydrates, and nucleoside monophosphates (230 aa)
       
      0.727
KRR1
Essential nucleolar protein required for the synthesis of 18S rRNA and for the assembly of 40S ribosomal subunit; Required for 40S ribosome biogenesis. Involved in nucleolar processing of pre-18S ribosomal RNA and ribosome assembly. Essential for vegetative growth (316 aa)
       
      0.727
WTM1
Transcriptional modulator involved in regulation of meiosis, silencing, and expression of RNR genes; required for nuclear localization of the ribonucleotide reductase small subunit Rnr2p and Rnr4p; contains WD repeats; Transcriptional modulator with roles in meiotic regulation and silencing. Acts either as an adapter to facilitate nuclear import by KAP122 of the RNR2-RNR4 herodimer, also called beta-beta’ subunit, which corresponds to the small subunit of the ribonucleotide reductase (RNR); or as an anchor to retain RNR2- RNR4 in the nucleus (437 aa)
       
 
0.707
RNR4
Ribonucleotide-diphosphate reductase (RNR), small subunit; the RNR complex catalyzes the rate-limiting step in dNTP synthesis and is regulated by DNA replication and DNA damage checkpoint pathways via localization of the small subunits; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. RNR4 is required for proper folding of RNR2 and assembly with the large subunits (345 aa)
       
      0.704
SML1
Ribonucleotide reductase inhibitor involved in regulating dNTP production; regulated by Mec1p and Rad53p during DNA damage and S phase; Strong inhibitor of ribonucleotide reductase (RNR1) and is involved in regulating dNTP production (104 aa)
       
 
  0.686
MEC1
Genome integrity checkpoint protein and PI kinase superfamily member; signal transducer required for cell cycle arrest and transcriptional responses prompted by damaged or unreplicated DNA; monitors and participates in meiotic recombination; Serine/threonine protein kinase which activates checkpoint signaling upon genotoxic stresses such as ionizing radiation (IR), ultraviolet light (UV), or DNA replication stalling, thereby acting as a DNA damage sensor. Recognizes the substrate consensus sequence [ST]-Q. Recruited in complex with protein LCD1 by the single-strand-binding protein comp [...] (2368 aa)
       
 
  0.673
RAD53
Protein kinase, required for cell-cycle arrest in response to DNA damage; activated by trans autophosphorylation when interacting with hyperphosphorylated Rad9p; also interacts with ARS1 and plays a role in initiation of DNA replication; Controls S-phase checkpoint as well as G1 and G2 DNA damage checkpoints. Phosphorylates proteins on serine, threonine, and tyrosine. Prevents entry into anaphase and mitotic exit after DNA damage via regulation of the Polo kinase CDC5. Seems to be involved in the phosphorylation of RPH1 (821 aa)
       
 
  0.601
SPT15
TATA-binding protein, general transcription factor that interacts with other factors to form the preinitiation complex at promoters, essential for viability; General transcription factor that functions at the core of the DNA-binding general transcription factor complex TFIID. Binding of TFIID to a promoter (with or without TATA element) is the initial step in preinitiation complex (PIC) formation. TFIID plays a key role in the regulation of gene expression by RNA polymerase II through different activities such as transcription activator interaction, core promoter recognition and select [...] (240 aa)
           
  0.574
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (11%) [HD]