STRINGSTRING
MOD5 protein (Saccharomyces cerevisiae) - STRING interaction network
"MOD5" - Delta 2-isopentenyl pyrophosphate:tRNA isopentenyl transferase, required for biosynthesis of the modified base isopentenyladenosine in mitochondrial and cytoplasmic tRNAs in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
MOD5Delta 2-isopentenyl pyrophosphate-tRNA isopentenyl transferase, required for biosynthesis of the modified base isopentenyladenosine in mitochondrial and cytoplasmic tRNAs; gene is nuclear and encodes two isozymic forms; Catalyzes the transfer of a dimethylallyl group onto the adenine at position 37 in the anticodon loop on a specific subset of tRNAs both in the cytosol and the mitochondrion, leading to the formation of N6-(dimethylallyl)adenosine (i(6)A). This modification optimizes the codon-anticodon fit in the ribosome and promotes translational fidelity. Competes with the farnesyl [...] (428 aa)    
Predicted Functional Partners:
TRM1
tRNA methyltransferase; two forms of the protein are made by alternative translation starts; localizes to both the nucleus and mitochondrion to produce the modified base N2,N2-dimethylguanosine in tRNAs in both compartments; Dimethylates a single guanine residue at position 26 of most tRNAs using S-adenosyl-L-methionine as donor of the methyl groups. Required for the modification of both mitochondrial and cytoplasmic tRNAs (570 aa)
     
 
  0.851
PUS1
tRNA-pseudouridine synthase, introduces pseudouridines at positions 26-28, 34-36, 65, and 67 of tRNA; nuclear protein that appears to be involved in tRNA export; also acts on U2 snRNA; Formation of pseudouridine at positions 27 and 28 in the anticodon stem and loop of transfer RNAs; at positions 34 and 36 of intron-containing precursor tRNA(Ile) and at position 35 in the intron-containing tRNA(Tyr) (544 aa)
   
   
  0.771
ADE12
Adenylosuccinate synthase, catalyzes the first step in synthesis of adenosine monophosphate from inosine 5’monophosphate during purine nucleotide biosynthesis; exhibits binding to single-stranded autonomously replicating (ARS) core sequence; Plays an important role in the de novo pathway and in the salvage pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP (433 aa)
   
 
  0.739
IMD2
Inosine monophosphate dehydrogenase, catalyzes the rate-limiting step in GTP biosynthesis, expression is induced by mycophenolic acid resulting in resistance to the drug, expression is repressed by nutrient limitatio; Catalyzes the conversion of inosine 5’-phosphate (IMP) to xanthosine 5’-phosphate (XMP), the first committed and rate- limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. In contrast to the other IMPDH alleles IMD3 and IMD4, the enzymatic activity of IMD2 seems to be intrinsically drug resistant (523 aa)
   
 
  0.730
IMD1
Nonfunctional protein with homology to IMP dehydrogenase; probable pseudogene, located close to the telomere; is not expressed at detectable levels; YAR073W and YAR075W comprise a continuous reading frame in some strains of S. cerevisiae (403 aa)
   
 
  0.730
HTS1
Cytoplasmic and mitochondrial histidine tRNA synthetase; efficient mitochondrial localization requires both a presequence and an amino-terminal sequence; mutations in human ortholog HARS2 are associated with Perrault syndrome; Catalyzes the aminoacylation of histidyl-tRNA in both the cytoplasm and the mitochondrion (546 aa)
         
  0.701
TFC1
One of six subunits of the RNA polymerase III transcription initiation factor complex (TFIIIC); part of the TauA globular domain of TFIIIC that binds DNA at the BoxA promoter sites of tRNA and similar genes; human homolog is TFIIIC-63; TFIIIC mediates tRNA and 5S RNA gene activation by binding to intragenic promoter elements. Upstream of the transcription start site, TFIIIC assembles the initiation complex TFIIIB-TFIIIC-tDNA, which is sufficient for RNA polymerase III recruitment and function. Part of the tauA domain of TFIIIC that binds boxA DNA promoter sites of tRNA and similar gene [...] (649 aa)
       
 
  0.700
PUS4
Pseudouridine synthase, catalyzes only the formation of pseudouridine-55 (Psi55), a highly conserved tRNA modification, in mitochondrial and cytoplasmic tRNAs; PUS4 overexpression leads to translational derepression of GCN4 (Gcd- phenotype); Responsible for synthesis of pseudouridine from uracil- 55 in the psi GC loop of transfer RNAs (403 aa)
     
   
  0.699
TRM9
tRNA methyltransferase, catalyzes esterification of modified uridine nucleotides in tRNA(Arg3) and tRNA(Glu), likely as part of a complex with Trm112p; deletion confers resistance to zymocin; Required for the methylation of the wobble bases at position 34 in tRNA. Appears to have a role in stress-response (279 aa)
   
   
  0.698
SEN2
Subunit of the tRNA splicing endonuclease, which is composed of Sen2p, Sen15p, Sen34p, and Sen54p; Sen2p contains the active site for tRNA 5’ splice site cleavage and has similarity to Sen34p and to Archaeal tRNA splicing endonuclease; Constitutes one of the two catalytic subunit of the tRNA-splicing endonuclease complex, a complex responsible for identification and cleavage of the splice sites in pre-tRNA. It cleaves pre-tRNA at the 5’- and 3’-splice sites to release the intron. The products are an intron and two tRNA half-molecules bearing 2’,3’-cyclic phosphate and 5’-OH termini. Th [...] (377 aa)
           
  0.697
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (6%) [HD]