STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
RMI1RecQ-mediated genome instability protein 1; Subunit of the RecQ (Sgs1p) - Topo III (Top3p) complex; stimulates superhelical relaxing, DNA catenation/decatenation and ssDNA binding activities of Top3p; involved in response to DNA damage; functions in S phase-mediated cohesion establishment via a pathway involving the Ctf18-RFC complex and Mrc1p; stimulates Top3p DNA catenation/decatenation activity; null mutants display increased rates of recombination and delayed S phase. (241 aa)    
Predicted Functional Partners:
TOP3
DNA Topoisomerase III; conserved protein that functions in a complex with Sgs1p and Rmi1p to relax single-stranded negatively-supercoiled DNA preferentially; DNA catenation/decatenation activity is stimulated by RPA and Sgs1p-Top3p-Rmi1p; involved in telomere stability and regulation of mitotic recombination.
    
 0.999
SGS1
ATP-dependent helicase SGS1; RecQ family nucleolar DNA helicase; role in genome integrity maintenance, chromosome synapsis, meiotic joint molecule/crossover formation; stimulates activity of Top3p; rapidly lost in response to rapamycin in Rrd1p-dependent manner; forms nuclear foci upon DNA replication stress; yeast SGS1 complements mutations in human homolog BLM implicated in Bloom syndrome; also similar to human WRN implicated in Werner syndrome; human BLM and WRN can each complement yeast null mutant; Belongs to the helicase family. RecQ subfamily.
   
 0.999
MUS81
Subunit of structure-specific Mms4p-Mus81p endonuclease; cleaves branched DNA; involved in DNA repair, replication fork stability, and joint molecule formation/resolution during meiotic recombination; promotes template switching during break-induced replication (BIR), causing non-reciprocal translocations (NRTs); helix-hairpin-helix protein; phosphorylation of non-catalytic subunit Mms4p by Cdc28p and Cdcp during mitotic cell cycle activates function of Mms4p-Mus81p; Belongs to the XPF family.
    
 
 0.997
DNA2
Tripartite DNA replication factor; single-stranded DNA-dependent ATPase, ATP-dependent nuclease, helicase; tracking protein for flap cleavage during Okazaki fragment maturation; involved in DNA repair/processing of meiotic DNA double strand breaks; component of telomeric chromatin with cell-cycle dependent localization; required for telomerase-dependent telomere synthesis; forms nuclear foci upon DNA replication stress; human homolog DNA2 complements yeast dna2 mutant.
   
 
 0.996
RAD51
DNA repair protein RAD51; Strand exchange protein; forms a helical filament with DNA that searches for homology; involved in the recombinational repair of double-strand breaks in DNA during vegetative growth and meiosis; homolog of Dmc1p and bacterial RecA protein.
    
 
 0.990
SRS2
DNA helicase and DNA-dependent ATPase; involved in DNA repair and checkpoint recovery, needed for proper timing of commitment to meiotic recombination and transition from Meiosis I to II; blocks trinucleotide repeat expansion; affects genome stability; disassembles Rad51p nucleoprotein filaments during meiotic recombination; stimulates activity of the Mus81p-Mms4p endonuclease, independently of Srs2p catalytic activity; functional homolog of human RTEL1.
    
 
 0.985
MMS4
Subunit of structure-specific Mms4p-Mus81p endonuclease; cleaves branched DNA; involved in recombination, DNA repair, and joint molecule formation/resolution during meiotic recombination; phosphorylation of the non-catalytic subunit Mms4p by Cdc28p and Cdc5p during mitotic cell cycle activates the function of Mms4p-Mus81p.
    
 
 0.980
EXO1
Exodeoxyribonuclease 1; 5'-3' exonuclease and flap-endonuclease; involved in recombination, double-strand break repair, MMS2 error-free branch of the post replication (PRR) pathway and DNA mismatch repair; role in telomere maintenance; member of the Rad2p nuclease family, with conserved N and I nuclease domains; relative distribution to the nucleus increases upon DNA replication stress; EXO1 has a paralog, DIN7, that arose from the whole genome duplication.
   
 
 0.975
RAD52
DNA repair and recombination protein RAD52; Protein that stimulates strand exchange; stimulates strand exchange by facilitating Rad51p binding to single-stranded DNA; anneals complementary single-stranded DNA; involved in the repair of double-strand breaks in DNA during vegetative growth and meiosis and UV induced sister chromatid recombination; Belongs to the RAD52 family.
   
 
 0.967
SLX1
Endonuclease involved in DNA recombination and repair; subunit of a complex, with Slx4p, that hydrolyzes 5' branches from duplex DNA in response to stalled or converging replication forks; function overlaps with that of Sgs1p-Top3p.
   
 
 0.965
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (24%) [HD]