STRINGSTRING
SEC16 protein (Saccharomyces cerevisiae) - STRING interaction network
"SEC16" - COPII vesicle coat protein required for ER transport vesicle budding in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SEC16COPII vesicle coat protein required for ER transport vesicle budding; Sec16p is bound to the periphery of ER membranes and may act to stabilize initial COPII complexes; interacts with Sec23p, Sec24p and Sec31p; Involved in the initiation of assembly of the COPII coat required for the formation of transport vesicles from the endoplasmic reticulum (ER) and the selection of cargo molecules. Also involved in autophagy (2195 aa)    
Predicted Functional Partners:
SEC13
Component of the Nup84 nuclear pore sub-complex, the Sec13p-Sec31p complex of the COPII vesicle coat, and the SEA (Seh1-associated) complex; required for vesicle formation in ER to Golgi transport and nuclear pore complex organization; the Nup84 sub /.../x has a role in transcription elongation; Functions as a component of the nuclear pore complex (NPC) and the COPII coat. It is one of 5 proteins constituting the COPII coat, which is involved in anterograde (ER to Golgi) double- membrane transport vesicle formation. First the small GTPase SAR1, activated by and binding to the integral [...] (297 aa)
       
 
  0.994
SEC23
GTPase-activating protein, stimulates the GTPase activity of Sar1p; component of the Sec23p-Sec24p heterodimer of the COPII vesicle coat, involved in ER to Golgi transport; substrate of Ubp3/Bre5 complex; ubiquitylated by Ub-ligase Rsp5p; proteasome /.../ted degradation of Sec23p is regulated by Cdc48p; Component of the coat protein complex II (COPII) which promotes the formation of transport vesicles from the endoplasmic reticulum (ER). The coat has two main functions, the physical deformation of the endoplasmic reticulum membrane into vesicles and the selection of cargo molecules. SE [...] (768 aa)
       
 
  0.986
SFB2
Component of the Sec23p-Sfb2p heterodimer of the COPII vesicle coat, required for cargo selection during vesicle formation in ER to Golgi transport; homologous to Sec24p and Sfb3p; Component of the COPII coat, that covers ER-derived vesicles involved in transport from the endoplasmic reticulum to the Golgi apparatus. COPII acts in the cytoplasm to promote the transport of secretory, plasma membrane, and vacuolar proteins from the endoplasmic reticulum to the Golgi complex (876 aa)
       
 
  0.950
SEC24
Component of the Sec23p-Sec24p heterodimer of the COPII vesicle coat, required for cargo selection during vesicle formation in ER to Golgi transport; homologous to Sfb2p and Sfb3p; Component of the coat protein complex II (COPII) which promotes the formation of transport vesicles from the endoplasmic reticulum (ER). The coat has two main functions, the physical deformation of the endoplasmic reticulum membrane into vesicles and the selection of cargo molecules. SEC24 specifically recruits cargo proteins like BET1 or SYS1 to the COPII vesicles. The SEC23/24 complex is also involved in i [...] (926 aa)
       
 
  0.949
SAR1
GTPase, GTP-binding protein of the ARF family, component of COPII coat of vesicles; required for transport vesicle formation during ER to Golgi protein transport; Small GTPase component of the coat protein complex II (COPII) which promotes the formation of transport vesicles from the endoplasmic reticulum (ER). The coat has two main functions, the physical deformation of the endoplasmic reticulum membrane into vesicles and the selection of cargo molecules. SAR1 controls the coat assembly in a stepwise manner. Activated SAR1-GTP by SEC12 binds to membranes first and recruits the SEC23/2 [...] (190 aa)
       
 
  0.941
TRA1
Subunit of SAGA and NuA4 histone acetyltransferase complexes; interacts with acidic activators (e.g., Gal4p) which leads to transcription activation; similar to human TRRAP, which is a cofactor for c-Myc mediated oncogenic transformation; Essential component of histone acetyltransferase (HAT) complexes, which serves as a target for activators during recruitment of HAT complexes. Essential for vegetative growth. Functions as a component of the transcription regulatory histone acetylation (HAT) complexes SAGA, SALSA and SLIK. SAGA is involved in RNA polymerase II-dependent transcriptiona [...] (3744 aa)
     
        0.941
SEN1
Presumed helicase required for RNA polymerase II transcription termination and processing of RNAs; homolog of Senataxin which causes Ataxia-Oculomotor Apraxia 2 and a dominant form of amyotrophic lateral sclerosis; ATP-dependent 5’->3’ DNA/RNA helicase required for the expression and maturation of diverse classes of non-protein-coding RNAs like precursor tRNAs, rRNAs and small nuclear (snRNA) and nucleolar (snoRNA) RNAs. Directs RNA polymerase II transcription termination on snoRNAs as well as on several short protein-coding genes. May also play a role in transcription-coupled nucleoti [...] (2231 aa)
     
        0.940
SEC31
Component of the Sec13p-Sec31p complex of the COPII vesicle coat, required for vesicle formation in ER to Golgi transport; mutant has increased aneuploidy tolerance; Component of the coat protein complex II (COPII) which promotes the formation of transport vesicles from the endoplasmic reticulum (ER). The coat has two main functions, the physical deformation of the endoplasmic reticulum membrane into vesicles and the selection of cargo molecules (1273 aa)
     
 
  0.922
TOM1
E3 ubiquitin ligase of the hect-domain class; has a role in mRNA export from the nucleus and may regulate transcriptional coactivators; involved in degradation of excess histones; Probable ubiquitin ligase protein involved in many cellular processes, such as transcription regulation, maintenance of nuclear structure, cell cycle, mRNA export and rRNA maturation. E3 ubiquitin ligase proteins mediate ubiquitination and subsequent proteasomal degradation of target proteins. Involved in transcription regulation by interacting, and probably mediating, ubiquitination of some subunit of the SA [...] (3268 aa)
     
        0.922
RPO21
RNA polymerase II largest subunit B220, part of central core; phosphorylation of C-terminal heptapeptide repeat domain regulates association with transcription and splicing factors; similar to bacterial beta-prime; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Forms the polymerase active center together with the second largest subunit. Pol II is the central component of the basal [...] (1733 aa)
     
      0.911
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (10%) [HD]