STRINGSTRING
AFT2 protein (Saccharomyces cerevisiae) - STRING interaction network
"AFT2" - Iron-regulated transcriptional activator in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AFT2Iron-regulated transcriptional activator; activates genes involved in intracellular iron use and required for iron homeostasis and resistance to oxidative stress; similar to Aft1p; Transcription factor required for iron homeostasis and resistance to oxidative stress. With RCS1, activates the gene expression in response to low-iron conditions, also called iron regulon (416 aa)    
Predicted Functional Partners:
FET3
Ferro-O2-oxidoreductase required for high-affinity iron uptake and involved in mediating resistance to copper ion toxicity, belongs to class of integral membrane multicopper oxidases; Iron transport multicopper ferroxidase required for Fe(2+) ion high affinity uptake. Required to oxidize Fe(2+) and release it from the transporter. Essential component of copper- dependent iron transport (636 aa)
           
  0.847
ARN1
Transporter, member of the ARN family of transporters that specifically recognize siderophore-iron chelates; responsible for uptake of iron bound to ferrirubin, ferrirhodin, and related siderophores; Involved in the transport of siderophore ferrichrome and so has a role in iron homeostasis (627 aa)
           
  0.760
FTR1
High affinity iron permease involved in the transport of iron across the plasma membrane; forms complex with Fet3p; expression is regulated by iron; Permease for high affinity iron uptake (404 aa)
           
  0.760
TIS11
mRNA-binding protein expressed during iron starvation; binds to a sequence element in the 3’-untranslated regions of specific mRNAs to mediate their degradation; involved in iron homeostasis; Binds to specific AU-rich elements (ARE) in the 3’- untranslated region of target mRNAs and promotes their degradation. In response to iron deficiency, promotes the decay of many mRNAs encoding proteins involved in iron-dependent pathways. Recruits the DHH1 helicase to the SDH4 mRNA and promotes SDH4 mRNA decay. Also destabilizes target mRNA by modulating 3’-end processing, creating extended trans [...] (285 aa)
           
  0.749
GRX4
Hydroperoxide and superoxide-radical responsive glutathione-dependent oxidoreductase; monothiol glutaredoxin subfamily member along with Grx3p and Grx5p; protects cells from oxidative damage; mutant has increased aneuploidy tolerance; Monothiol glutaredoxin involved in the biogenesis of iron-sulfur clusters (By similarity). Binds one iron-sulfur cluster per dimer. The iron-sulfur cluster is bound between subunits, and is complexed by a bound glutathione and a cysteine residue from each subunit (Probable) (244 aa)
           
  0.742
FIT3
Mannoprotein that is incorporated into the cell wall via a glycosylphosphatidylinositol (GPI) anchor, involved in the retention of siderophore-iron in the cell wall; Involved in the uptake of non-siderophore and siderohpore sources of iron. Has a role in the retention of iron in the cell wall and periplasmic space (204 aa)
           
  0.739
FRE1
Ferric reductase and cupric reductase, reduces siderophore-bound iron and oxidized copper prior to uptake by transporters; expression induced by low copper and iron levels; Metalloreductase responsible for reducing extracellular iron and copper prior to import. Catalyzes the reductive uptake of Fe(3+)-salts and Fe(3+) bound to catecholate or hydroxamate siderophores. Fe(3+) is reduced to Fe(2+), which then dissociates from the siderophore and can be imported by the high-affinity Fe(2+) transport complex in the plasma membrane. Also participates in Cu(2+) reduction and Cu(+) uptake (686 aa)
           
  0.739
FRE2
Ferric reductase and cupric reductase, reduces siderophore-bound iron and oxidized copper prior to uptake by transporters; expression induced by low iron levels but not by low copper levels; Metalloreductase responsible for reducing extracellular iron and copper prior to import. Catalyzes the reductive uptake of Fe(3+)-salts and Fe(3+) bound to catecholate or hydroxamate siderophores. Fe(3+) is reduced to Fe(2+), which then dissociates from the siderophore and can be imported by the high-affinity Fe(2+) transport complex in the plasma membrane. Also participates in Cu(2+) reduction and [...] (711 aa)
           
  0.729
YFH1
Mitochondrial matrix iron chaperone; oxidizes and stores iron; interacts with Isu1p to promote Fe-S cluster assembly; mutation results in multiple Fe/S-dependent enzyme deficiencies; human frataxin homolog is mutated in Friedrich’s ataxia; Promotes the biosynthesis of heme as well as the assembly and repair of iron-sulfur clusters by delivering Fe(2+) to proteins involved in these pathways. Plays a role in the protection against iron-catalyzed oxidative stress through its ability to catalyze the oxidation of Fe(2+) to Fe(3+). Can store large amounts of the metal in the form of a ferrih [...] (174 aa)
           
  0.729
ARN2
Transporter, member of the ARN family of transporters that specifically recognize siderophore-iron chelates; responsible for uptake of iron bound to the siderophore triacetylfusarinine C; Involved in the transport of siderophore triacestylfusarinine C and so has a role in iron homeostasis (620 aa)
           
  0.728
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (4%) [HD]