STRINGSTRING
SSO1 protein (Saccharomyces cerevisiae) - STRING interaction network
"SSO1" - Plasma membrane t-SNARE involved in fusion of secretory vesicles at the plasma membrane and in vesicle fusion during sporulation in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SSO1Plasma membrane t-SNARE involved in fusion of secretory vesicles at the plasma membrane and in vesicle fusion during sporulation; forms a complex with Sec9p that binds v-SNARE Snc2p; syntaxin homolog; functionally redundant with Sso2p; Required for vesicle fusion with the plasma membrane (290 aa)    
Predicted Functional Partners:
SNC1
Vesicle membrane receptor protein (v-SNARE) involved in the fusion between Golgi-derived secretory vesicles with the plasma membrane; proposed to be involved in endocytosis; member of the synaptobrevin/VAMP family of R-type v-SNARE proteins; SNC1 and SNC2 are vesicle-targeting proteins essential for normal secretory traffic between the Golgi and the plasma membrane. They may also be involved in vesicle fusion (117 aa)
     
  0.999
SEC9
t-SNARE protein important for fusion of secretory vesicles with the plasma membrane; similar to but not functionally redundant with Spo20p; SNAP-25 homolog; Component of a SNARE complex that may be the effector of SEC4 function in exocytosis (651 aa)
       
  0.999
SNC2
Vesicle membrane receptor protein (v-SNARE) involved in the fusion between Golgi-derived secretory vesicles with the plasma membrane; member of the synaptobrevin/VAMP family of R-type v-SNARE proteins; SNC1 and SNC2 are vesicle-targeting proteins essential for normal secretory traffic between the Golgi and the plasma membrane. They may also be involved in vesicle fusion (115 aa)
     
  0.999
SEC22
R-SNARE protein; assembles into SNARE complex with Bet1p, Bos1p and Sed5p; cycles between the ER and Golgi complex; involved in anterograde and retrograde transport between the ER and Golgi; synaptobrevin homolog; Nonessential SNARE involved in targeting and fusion of ER-derived transport vesicles with the Golgi complex as well as Golgi-derived retrograde transport vesicles with the ER (214 aa)
     
  0.999
SPO20
Meiosis-specific subunit of the t-SNARE complex, required for prospore membrane formation during sporulation; similar to but not functionally redundant with Sec9p; SNAP-25 homolog; Required to maintain the prospore membrane to the nucleus during sporulation in order to capture the daughter nuclei and form the spores. Mediates the fusion of exocytic vesicles with the plasma membrane during sporulation through its interactions with the t-SNARE SSO1 and v-SNARE SNC2 (397 aa)
     
  0.999
SED5
cis-Golgi t-SNARE syntaxin required for vesicular transport between the ER and the Golgi complex, binds at least 9 SNARE proteins; Required for vesicular transport between the endoplasmic reticulum and the Golgi complex. Acts as a target organelle soluble NSF attachment protein receptor (t-SNARE) (340 aa)
     
  0.998
NYV1
v-SNARE component of the vacuolar SNARE complex involved in vesicle fusion; inhibits ATP-dependent Ca(2+) transport activity of Pmc1p in the vacuolar membrane; Vacuolar v-SNARE required for docking. Only involved in homotypic vacuole fusion. Required for Ca(2+) efflux from the vacuolar lumen, a required signal for subsequent membrane fusion events, by inhibiting vacuolar Ca(2+)-ATPase PMC1 and promoting Ca(2+) release when forming trans-SNARE assemblies during the docking step (253 aa)
     
  0.998
SEC17
Peripheral membrane protein required for vesicular transport between ER and Golgi, the ’priming’ step in homotypic vacuole fusion, and autophagy; stimulates the ATPase activity of Sec18p; has similarity to mammalian alpha-SNAP; SNARE complex protein that binds to cis-SNARE complexes on membranes and is required for vesicular transport between the endoplasmic reticulum and the Golgi apparatus and for homotypic vacuole fusion. During the priming step of membrane fusion, is released from cis-SNARE complexes by SEC18 to establish a pool of unpaired SNAREs, which are required for interactio [...] (292 aa)
     
  0.998
YKT6
Vesicle membrane protein (v-SNARE) with acyltransferase activity; involved in trafficking to and within the Golgi, endocytic trafficking to the vacuole, and vacuolar fusion; membrane localization due to prenylation at the carboxy-terminus (200 aa)
     
  0.997
GOS1
v-SNARE protein involved in Golgi transport, homolog of the mammalian protein GOS-28/GS28; Involved in transport from the ER to the Golgi apparatus as well as in intra-Golgi transport. It belongs to a super-family of proteins called t-SNAREs or soluble NSF (N-ethylmaleimide- sensitive factor) attachment protein receptor. Rescues alpha- factor maturation defects (223 aa)
       
  0.997
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (12%) [HD]