STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CLN2G1/S-specific cyclin CLN2; G1 cyclin involved in regulation of the cell cycle; activates Cdc28p kinase to promote the G1 to S phase transition; late G1 specific expression depends on transcription factor complexes, MBF (Swi6p-Mbp1p) and SBF (Swi6p-Swi4p); CLN2 has a paralog, CLN1, that arose from the whole genome duplication; cell cycle arrest phenotype of the cln1 cln2 cln3 triple null mutant is complemented by any of human cyclins CCNA2, CCNB1, CCNC, CCND1, or CCNE1. (545 aa)    
Predicted Functional Partners:
CLN3
G1/S-specific cyclin CLN3; G1 cyclin involved in cell cycle progression; activates Cdc28p kinase to promote G1 to S phase transition; plays a role in regulating transcription of other G1 cyclins, CLN1 and CLN2; regulated by phosphorylation and proteolysis; acetyl-CoA induces CLN3 transcription in response to nutrient repletion to promote cell-cycle entry; cell cycle arrest phenotype of the cln1 cln2 cln3 triple null mutant is complemented by any of human cyclins CCNA2, CCNB1, CCNC, CCND1, or CCNE1.
   
 0.999
CDC28
Cyclin-dependent kinase (CDK) catalytic subunit; master regulator of mitotic and meiotic cell cycles; alternately associates with G1, S, G2/M phase cyclins, which provide substrate specificity; regulates metabolism, basal transcription, chromosome dynamics, growth and morphogenesis; transcript induction in osmostress involves antisense RNA; human homologs CDK1, CDK2, CDK3 can complement yeast conditional cdc28 mutants; human CDK1, CDK2 can complement yeast cdc28 null mutant.
   
 0.999
SWI4
Regulatory protein SWI4; DNA binding component of the SBF complex (Swi4p-Swi6p); a transcriptional activator that in concert with MBF (Mbp1-Swi6p) regulates late G1-specific transcription of targets including cyclins and genes required for DNA synthesis and repair; Slt2p-independent regulator of cold growth; acetylation at two sites, K1016 and K1066, regulates interaction with Swi6p.
   
 
 0.999
GRR1
F-box protein component of an SCF ubiquitin-ligase complex; modular substrate specificity factor which associates with core SCF (Cdc53p, Skp1p and Hrt1p/Rbx1p) to form the SCF(Grr1) complex; SCF(Grr1) acts as a ubiquitin-protein ligase directing ubiquitination of substrates such as: Gic2p, Mks1p, Mth1p, Cln1p, Cln2p and Cln3p; involved in carbon catabolite repression, glucose-dependent divalent cation transport, glucose transport, morphogenesis, and sulfite detoxification.
    
 0.999
SIC1
Protein SIC1; Cyclin-dependent kinase inhibitor (CKI); inhibitor of Cdc28-Clb kinase complexes that controls G1/S phase transition, preventing premature S phase and ensuring genomic integrity; phosphorylated by Clb5/6-Cdk1 and Cln1/2-Cdk1 kinase which regulate timing of Sic1p degradation; phosphorylation targets Sic1p for SCF(CDC4)-dependent turnover; functional homolog of mammalian Kip1.
    
 0.999
SWI6
Regulatory protein SWI6; Transcription cofactor; forms complexes with Swi4p and Mbp1p to regulate transcription at the G1/S transition; involved in meiotic gene expression; also binds Stb1p to regulate transcription at START; cell wall stress induces phosphorylation by Mpk1p, which regulates Swi6p localization; required for the unfolded protein response, independently of its known transcriptional coactivators.
   
 0.999
CLN1
G1/S-specific cyclin CLN1; G1 cyclin involved in regulation of the cell cycle; activates Cdc28p kinase to promote the G1 to S phase transition; late G1 specific expression depends on transcription factor complexes, MBF (Swi6p-Mbp1p) and SBF (Swi6p-Swi4p); CLN1 has a paralog, CLN2, that arose from the whole genome duplication; cell cycle arrest phenotype of the cln1 cln2 cln3 triple null mutant is complemented by any of human cyclins CCNA2, CCNB1, CCNC, CCND1, or CCNE1.
   
0.999
MBP1
Transcription factor; involved in regulation of cell cycle progression from G1 to S phase, forms a complex with Swi6p that binds to MluI cell cycle box regulatory element in promoters of DNA synthesis genes.
   
 
 0.998
BCK2
Protein BCK2; Serine/threonine-rich protein involved in PKC1 signaling pathway; protein kinase C (PKC1) signaling pathway controls cell integrity; overproduction suppresses pkc1 mutations.
    
 
 0.998
FAR1
CDK inhibitor and nuclear anchor; during the cell cycle Far1p sequesters the GEF Cdc24p in the nucleus; phosphorylation by Cdc28p-Cln results in SCFCdc4 complex-mediated ubiquitin-dependent degradation, releasing Cdc24p for export and activation of GTPase Cdc42p; in response to pheromone, phosphorylation of Far1p by MAPK Fus3p results in association with, and inhibition of Cdc28p-Cln, as well as Msn5p mediated nuclear export of Far1p-Cdc24p, targeting Cdc24p to polarity sites.
   
 0.998
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (40%) [HD]