STRINGSTRING
YPR172W protein (Saccharomyces cerevisiae) - STRING interaction network
"YPR172W" - Protein of unknown function, transcriptionally activated by Yrm1p along with genes involved in multidrug resistance in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
YPR172WProtein of unknown function, transcriptionally activated by Yrm1p along with genes involved in multidrug resistance (200 aa)    
Predicted Functional Partners:
THI12
Protein involved in synthesis of the thiamine precursor hydroxymethylpyrimidine (HMP); member of a subtelomeric gene family including THI5, THI11, THI12, and THI13; Responsible for the formation of the pyrimidine heterocycle in the thiamine biosynthesis pathway. Catalyzes the formation of hydroxymethylpyrimidine phosphate (HMP-P) from histidine and pyridoxal phosphate (PLP). The protein uses PLP and the active site histidine to form HMP-P, generating an inactive enzyme. The enzyme can only undergo a single turnover, which suggests it is a suicide enzyme (340 aa)
         
    0.900
THI11
Protein involved in synthesis of the thiamine precursor hydroxymethylpyrimidine (HMP); member of a subtelomeric gene family including THI5, THI11, THI12, and THI13; Responsible for the formation of the pyrimidine heterocycle in the thiamine biosynthesis pathway. Catalyzes the formation of hydroxymethylpyrimidine phosphate (HMP-P) from histidine and pyridoxal phosphate (PLP). The protein uses PLP and the active site histidine to form HMP-P, generating an inactive enzyme. The enzyme can only undergo a single turnover, which suggests it is a suicide enzyme (340 aa)
         
    0.900
THI5
Protein involved in synthesis of the thiamine precursor hydroxymethylpyrimidine (HMP); member of a subtelomeric gene family including THI5, THI11, THI12, and THI13; Responsible for the formation of the pyrimidine heterocycle in the thiamine biosynthesis pathway. Catalyzes the formation of hydroxymethylpyrimidine phosphate (HMP-P) from histidine and pyridoxal phosphate (PLP). The protein uses PLP and the active site histidine to form HMP-P, generating an inactive enzyme. The enzyme can only undergo a single turnover, which suggests it is a suicide enzyme (340 aa)
         
    0.900
BUD16
Putative pyridoxal kinase, a key enzyme involved in pyridoxal 5’-phosphate synthesis, the active form of vitamin B6; required for genome integrity; involved in bud-site selection; similarity to yeast BUD17 and human pyridoxal kinase (PDXK); Required for synthesis of pyridoxal-5-phosphate from vitamin B6 (By similarity). Important for bud site selection (312 aa)
         
    0.900
THI13
Protein involved in synthesis of the thiamine precursor hydroxymethylpyrimidine (HMP); member of a subtelomeric gene family including THI5, THI11, THI12, and THI13; Responsible for the formation of the pyrimidine heterocycle in the thiamine biosynthesis pathway. Catalyzes the formation of hydroxymethylpyrimidine phosphate (HMP-P) from histidine and pyridoxal phosphate (PLP). The protein uses PLP and the active site histidine to form HMP-P, generating an inactive enzyme. The enzyme can only undergo a single turnover, which suggests it is a suicide enzyme (340 aa)
         
    0.900
PDX3
Pyridoxine (pyridoxamine) phosphate oxidase, has homologs in E. coli and Myxococcus xanthus; transcription is under the general control of nitrogen metabolism; Catalyzes the oxidation of either pyridoxine 5’- phosphate (PNP) or pyridoxamine 5’-phosphate (PMP) into pyridoxal 5’-phosphate (PLP) (228 aa)
           
  0.760
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (3%) [HD]