STRINGSTRING
HPA2 protein (Saccharomyces cerevisiae) - STRING interaction network
"HPA2" - Tetrameric histone acetyltransferase with similarity to Gcn5p, Hat1p, Elp3p, and Hpa3p in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
HPA2Tetrameric histone acetyltransferase with similarity to Gcn5p, Hat1p, Elp3p, and Hpa3p; acetylates histones H3 and H4 in vitro and exhibits autoacetylation activity; N-acetyltransferase that acetylates histone H3 at ’Lys- 14’ and histone H4 at ’Lys-5’ and ’Lys-12’. Also acetylates polyamines like putrescine, spermidine and spermine, and certain other small basic proteins like nuclear HMG proteins (156 aa)    
Predicted Functional Partners:
GCN5
Acetyltransferase, modifies N-terminal lysines on histones H2B and H3; acetylates Rsc4p, a subunit of the RSC chromatin-remodeling complex, altering replication stress tolerance; catalytic subunit of the ADA and SAGA histone acetyltransferase comple /.../ounding member of the Gcn5p-related N-acetyltransferase superfamily; mutant displays reduced transcription elongation in the G-less-based run-on (GLRO) assay; Acetylates histone H2B to form H2BK11ac and H2BK16ac, histone H3 to form H3K9ac, H3K14ac, H3K18ac, H3K23ac, H3K27ac and H3K36ac, with a lower preference histone H4 to form H4K8ac [...] (439 aa)
       
 
  0.973
HHT2
Histone H3, core histone protein required for chromatin assembly, part of heterochromatin-mediated telomeric and HM silencing; one of two identical histone H3 proteins (see HHT1); regulated by acetylation, methylation, and phosphorylation; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-transla [...] (136 aa)
           
  0.923
HHT1
Histone H3, core histone protein required for chromatin assembly, part of heterochromatin-mediated telomeric and HM silencing; one of two identical histone H3 proteins (see HHT2); regulated by acetylation, methylation, and phosphorylation (136 aa)
           
  0.923
HOS1
Class I histone deacetylase (HDAC) family member; deacetylates Smc3p on lysine residues at anaphase onset; has sequence similarity to Hda1p, Rpd3p, Hos2p, and Hos3p; interacts with the Tup1p-Ssn6p corepressor complex; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity) (470 aa)
         
  0.918
HOS3
Trichostatin A-insensitive homodimeric histone deacetylase (HDAC); specificity in vitro for histones H3, H4, H2A, and H2B; similar to Hda1p, Rpd3p, Hos1p, and Hos2p; deletion results in increased histone acetylation at rDNA repeats; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein comple [...] (697 aa)
         
  0.918
HHF2
Histone H4, core histone protein required for chromatin assembly and chromosome function; one of two identical histone proteins (see also HHF1); contributes to telomeric silencing; N-terminal domain involved in maintaining genomic integrity; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-trans [...] (103 aa)
           
  0.900
HHF1
Histone H4, core histone protein required for chromatin assembly and chromosome function; one of two identical histone proteins (see also HHF2); contributes to telomeric silencing; N-terminal domain involved in maintaining genomic integrity; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-trans [...] (103 aa)
           
  0.900
SPT15
TATA-binding protein, general transcription factor that interacts with other factors to form the preinitiation complex at promoters, essential for viability; General transcription factor that functions at the core of the DNA-binding general transcription factor complex TFIID. Binding of TFIID to a promoter (with or without TATA element) is the initial step in preinitiation complex (PIC) formation. TFIID plays a key role in the regulation of gene expression by RNA polymerase II through different activities such as transcription activator interaction, core promoter recognition and select [...] (240 aa)
           
  0.894
SAS2
Histone acetyltransferase (HAT) catalytic subunit of the SAS complex (Sas2p-Sas4p-Sas5p), which acetylates free histones and nucleosomes and regulates transcriptional silencing; member of the MYSTacetyltransferase family; Histone acetyltransferase (HAT) subunit of the SAS complex, a multiprotein complex that acetylates ’Lys-16’ of histone H4 and ’Lys-14’ of histone H3. The SAS complex is however unable to acetylate nucleosomal histones. The complex is involved in transcriptional silencing at telomeres and at HML locus. Also involved in rDNA silencing and G0 control (338 aa)
           
  0.843
RPD3
Histone deacetylase; regulates transcription, silencing, and other processes by influencing chromatin remodeling; forms at least two different complexes which have distinct functions and members; Catalytic component of the RPD3 histone deacetylase (HDAC) complexes RPD3C(L) and RPD3C(S) responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation plays an important role in transcriptional regulation, cell cycle progression, DNA damage response, osmotic stress response and developmental events. Is involved i [...] (433 aa)
         
  0.833
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (5%) [HD]