STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
B9J08_004933V-type proton ATPase proteolipid subunit; Proton-conducting pore forming subunit of the membrane integral V0 complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells. (161 aa)    
Predicted Functional Partners:
B9J08_005221
V-type proton ATPase subunit a; Essential component of the vacuolar proton pump (V-ATPase), a multimeric enzyme that catalyzes the translocation of protons across the membranes. Required for assembly and activity of the V-ATPase.
  
 0.997
B9J08_001784
V-type proton ATPase proteolipid subunit; Proton-conducting pore forming subunit of the membrane integral V0 complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells.
   
0.997
B9J08_001677
V-type proton ATPase subunit a; Essential component of the vacuolar proton pump (V-ATPase), a multimeric enzyme that catalyzes the translocation of protons across the membranes. Required for assembly and activity of the V-ATPase.
  
 0.997
B9J08_003537
V-type proton ATPase subunit; Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells. The active enzyme consists of a catalytic V1 domain attached to an integral membrane V0 proton pore complex. This subunit is a non-integral membrane component of the membrane pore domain and is required for proper assembly of the V0 sector. Might be involved in the regulated assembly of V1 subunits onto the membrane sector or alternatively may prevent the passage of protons through V0 pores; Belongs to the V-ATPase V0D/AC39 subunit family.
  
 0.993
B9J08_001701
Vacuolar proton pump subunit B; Non-catalytic subunit of the peripheral V1 complex of vacuolar ATPase; Belongs to the ATPase alpha/beta chains family.
  
 0.990
B9J08_001893
V-type proton ATPase catalytic subunit A.
  
 0.989
B9J08_001005
V-type proton ATPase subunit E.
  
 0.984
B9J08_005509
V-type proton ATPase proteolipid subunit; Proton-conducting pore forming subunit of the membrane integral V0 complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells.
  
0.982
B9J08_000867
V-type proton ATPase subunit F; Subunit of the peripheral V1 complex of vacuolar ATPase essential for assembly or catalytic function. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells.
  
 0.979
B9J08_000020
ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane.
  
 0.971
Your Current Organism:
Candida auris
NCBI taxonomy Id: 498019
Other names: B11220, CBS 10913, CBS10913, CDC B11220, Candida auris Satoh & Makimura, 2009, Candida sp. KM-143, DSM 21092, JCM 15448, JCM15448, [. auris, [Candida] auris
Server load: low (30%) [HD]