STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Hoch_3499KEGG: mlo:mll0351 hypothetical protein. (332 aa)    
Predicted Functional Partners:
Hoch_1925
KEGG: afw:Anae109_4348 NADH-quinone oxidoreductase, F subunit; TIGRFAM: NADH-quinone oxidoreductase, F subunit; PFAM: Respiratory-chain NADH dehydrogenase domain 51 kDa subunit; NADH ubiquinone oxidoreductase, F subunit, iron sulphur binding; Soluble ligand binding domain.
   
 
 0.782
Hoch_4517
PFAM: NADH:ubiquinone oxidoreductase, subunit G, iron-sulphur binding; ferredoxin; molybdopterin oxidoreductase Fe4S4 region; KEGG: scl:sce0526 NADH dehydrogenase (ubiquinone).
   
 
 0.777
nuoD
NADH dehydrogenase I, D subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family.
   
 
 0.742
Hoch_1924
TIGRFAM: NADH-quinone oxidoreductase, E subunit; PFAM: NADH dehydrogenase (ubiquinone) 24 kDa subunit; KEGG: NDUFV2; NADH dehydrogenase (ubiquinone) flavoprotein 2, 24kDa; K03943 NADH dehydrogenase (ubiquinone) flavoprotein 2.
   
   0.732
nuoC
NADH (or F420H2) dehydrogenase, subunit C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family.
   
 
 0.682
nuoB
NADH-quinone oxidoreductase, B subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.
   
   0.655
nuoH
NADH dehydrogenase (quinone); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone.
    
   0.641
nuoA
NADH-ubiquinone/plastoquinone oxidoreductase chain 3; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family.
    
   0.600
Hoch_3498
PFAM: short-chain dehydrogenase/reductase SDR; KR domain protein; KEGG: rlt:Rleg2_1425 short-chain dehydrogenase/reductase SDR.
       0.572
Hoch_0561
PFAM: 4Fe-4S ferredoxin iron-sulfur binding domain protein; KEGG: scl:sce1086 putative ferredoxin.
  
   0.515
Your Current Organism:
Haliangium ochraceum
NCBI taxonomy Id: 502025
Other names: H. ochraceum DSM 14365, Haliangium ochraceum DSM 14365, Haliangium ochraceum SMP-2, Haliangium ochraceum str. DSM 14365, Haliangium ochraceum strain DSM 14365, myxobacterium SMP-2
Server load: low (22%) [HD]