STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ftsHCell division protein FtsH; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins; Belongs to the AAA ATPase family. In the central section; belongs to the AAA ATPase family. (647 aa)    
Predicted Functional Partners:
OAZ12961.1
Membrane protein; HflC and HflK could encode or regulate a protease.
 
 0.997
OAZ12962.1
Membrane protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.995
rpmA
50S ribosomal protein L27; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL27 family.
 
 
 0.969
rplB
50S ribosomal protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family.
  
 
 0.969
rplM
50S ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly.
  
 
 0.967
rpsJ
30S ribosomal protein S10; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family.
  
 
 0.966
rplC
50S ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit.
  
 
 0.966
rpsE
30S ribosomal protein S5; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Belongs to the universal ribosomal protein uS5 family.
  
 
 0.966
rplN
50S ribosomal protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family.
  
 
 0.964
rpsK
30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family.
   
 
 0.962
Your Current Organism:
Thalassospira profundimaris
NCBI taxonomy Id: 502049
Other names: CGMCC 1.3997, DSM 17430, T. profundimaris, Thalassospira profundimaris Liu et al. 2007, Thalassospira sp. 35, Thalassospira sp. MCCC 1A00350, Thalassospira sp. MCCC 1A00385, Thalassospira sp. MCCC 1A01166, Thalassospira sp. MCCC 1A01318, Thalassospira sp. MCCC 1A02030, Thalassospira sp. PR54-5, Thalassospira sp. R4-5, Thalassospira sp. R8-17, Thalassospira sp. S25-3-2, strain WP0211
Server load: low (16%) [HD]