STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
parBChromosome-partitioning protein ParB; Belongs to the ParB family. (303 aa)    
Predicted Functional Partners:
parA
Chromosome partitioning protein ParA.
 
 
 0.964
AEI05041.1
Putative ParA family protein.
 
 
 0.835
AEI05222.1
Putative ParA family protein.
 
 
 0.831
rsmG
Ribosomal RNA small subunit methyltransferase G; Specifically methylates the N7 position of guanine in position 527 of 16S rRNA.
 
  
 0.827
ftsK
DNA translocase FtsK.
  
   
 0.772
mnmE
tRNA modification GTPase; Exhibits a very high intrinsic GTPase hydrolysis rate. Involved in the addition of a carboxymethylaminomethyl (cmnm) group at the wobble position (U34) of certain tRNAs, forming tRNA- cmnm(5)s(2)U34; Belongs to the TRAFAC class TrmE-Era-EngA-EngB-Septin-like GTPase superfamily. TrmE GTPase family.
  
    0.686
xerC
Tyrosine recombinase XerC; Site-specific tyrosine recombinase, which acts by catalyzing the cutting and rejoining of the recombining DNA molecules. The XerC- XerD complex is essential to convert dimers of the bacterial chromosome into monomers to permit their segregation at cell division. It also contributes to the segregational stability of plasmids.
  
  
 0.484
xerD
Tyrosine recombinase XerD; Site-specific tyrosine recombinase, which acts by catalyzing the cutting and rejoining of the recombining DNA molecules. The XerC- XerD complex is essential to convert dimers of the bacterial chromosome into monomers to permit their segregation at cell division. It also contributes to the segregational stability of plasmids.
  
  
 0.448
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family.
 
   
 0.448
mnmG
tRNA uridine 5-carboxymethylaminomethyl modification enzyme MnmG; NAD-binding protein involved in the addition of a carboxymethylaminomethyl (cmnm) group at the wobble position (U34) of certain tRNAs, forming tRNA-cmnm(5)s(2)U34; Belongs to the MnmG family.
  
  
 0.425
Your Current Organism:
Oligotropha carboxidovorans
NCBI taxonomy Id: 504832
Other names: O. carboxidovorans OM5, Oligotropha carboxidovorans OM5, Oligotropha carboxidovorans str. OM5, Oligotropha carboxidovorans strain OM5
Server load: low (18%) [HD]