STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
htpXHeat shock protein HtpX; Metalloprotease; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the peptidase M48B family. (284 aa)    
Predicted Functional Partners:
KGQ70170.1
ATPase; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.573
hflB
ATP-dependent metalloprotease; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins; Belongs to the AAA ATPase family. In the central section; belongs to the AAA ATPase family.
   
 
 0.559
dnaJ
Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...]
  
 
 0.535
grpE
Molecular chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...]
  
  
 0.518
clpB
Protein disaggregation chaperone; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family.
  
  
 0.450
KGQ70761.1
Membrane protein; Binds to the HflBKC complex which modulates FtsH activity; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the BI1 family.
  
  
 0.442
lon
DNA-binding protein; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short- lived regulatory proteins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner.
   
 
 0.432
rlmN
Ribosomal RNA large subunit methyltransferase N; Specifically methylates position 2 of adenine 2503 in 23S rRNA and position 2 of adenine 37 in tRNAs. m2A2503 modification seems to play a crucial role in the proofreading step occurring at the peptidyl transferase center and thus would serve to optimize ribosomal fidelity; Belongs to the radical SAM superfamily. RlmN family.
   
   0.430
KGQ70692.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
    0.412
Your Current Organism:
Chelonobacter oris
NCBI taxonomy Id: 505317
Other names: C. oris, CCUG 55632, Chelonobacter oris Gregersen et al. 2009, DSM 21392, Pasteurellaceae bacterium 11321, Pasteurellaceae bacterium 17123, Pasteurellaceae bacterium 18043, Pasteurellaceae bacterium 8484
Server load: low (14%) [HD]