STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
lpdA-2E3 component of 2-oxoglutarate dehydrogenase complex; catalyzes the oxidation of dihydrolipoamide to lipoamide; Derived by automated computational analysis using gene prediction method: Protein Homology. (475 aa)    
Predicted Functional Partners:
aceF
Dihydrolipoamide acetyltransferase; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2).
 0.999
odhB
Dihydrolipoamide succinyltransferase; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2).
 0.999
sucA
SucA; E1 component of the oxoglutarate dehydrogenase complex which catalyzes the formation of succinyl-CoA from 2-oxoglutarate; SucA catalyzes the reaction of 2-oxoglutarate with dihydrolipoamide succinyltransferase-lipoate to form dihydrolipoamide succinyltransferase-succinyldihydrolipoate and carbon dioxide; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.996
gcvH
Glycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein.
 
  
 0.989
lpdA
Dihydrolipoamide dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
0.982
aceE
Pyruvate dehydrogenase; Component of the pyruvate dehydrogenase (PDH) complex, that catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2).
  
 
 0.969
aceE-2
Pyruvate dehydrogenase; Component of the pyruvate dehydrogenase (PDH) complex, that catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2).
  
 
 0.964
ALO40333.1
Glutamate synthase subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.947
ALO36874.1
Catalyzes the oxidation of dihydrolipoamide to lipoamide; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 
0.933
ALO37151.1
Converts 2-oxoglutarate to glutamate; in Escherichia coli this enzyme plays a role in glutamate synthesis when the cell is under energy restriction; uses NADPH; forms a homohexamer; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the Glu/Leu/Phe/Val dehydrogenases family.
  
 
 0.927
Your Current Organism:
Alcaligenes faecalis
NCBI taxonomy Id: 511
Other names: A. faecalis, ATCC 8750, Achromobacter sp. ATCC8750, Alcaligenes sp. BP11, CIP 55.84, CIP 60.80, DSM 30030, IAM 12369, IFO 13111, JCM 20522, JCM 20663, NBRC 13111, NCAIM B.01104, NCIMB 8156, NCTC 11953
Server load: low (20%) [HD]