node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ALO36782.1 | lexA | UZ73_00025 | UZ73_16940 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | LexA family transcriptional regulator; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. | 0.800 |
ALO36782.1 | polA | UZ73_00025 | UZ73_05170 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family. | 0.886 |
ALO36782.1 | recA | UZ73_00025 | UZ73_01295 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | DNA recombination/repair protein RecA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. | 0.830 |
ALO36782.1 | uvrB | UZ73_00025 | UZ73_16955 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Excinuclease ABC subunit B; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate [...] | 0.411 |
ALO37251.1 | ALO39675.1 | UZ73_02595 | UZ73_16205 | Hybrid sensor histidine kinase/response regulator; Derived by automated computational analysis using gene prediction method: Protein Homology. | Response regulator receiver protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
ALO37251.1 | lexA | UZ73_02595 | UZ73_16940 | Hybrid sensor histidine kinase/response regulator; Derived by automated computational analysis using gene prediction method: Protein Homology. | LexA family transcriptional regulator; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. | 0.460 |
ALO37251.1 | polA | UZ73_02595 | UZ73_05170 | Hybrid sensor histidine kinase/response regulator; Derived by automated computational analysis using gene prediction method: Protein Homology. | DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family. | 0.710 |
ALO37251.1 | recA | UZ73_02595 | UZ73_01295 | Hybrid sensor histidine kinase/response regulator; Derived by automated computational analysis using gene prediction method: Protein Homology. | DNA recombination/repair protein RecA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. | 0.620 |
ALO37251.1 | uvrB | UZ73_02595 | UZ73_16955 | Hybrid sensor histidine kinase/response regulator; Derived by automated computational analysis using gene prediction method: Protein Homology. | Excinuclease ABC subunit B; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate [...] | 0.475 |
ALO39675.1 | ALO37251.1 | UZ73_16205 | UZ73_02595 | Response regulator receiver protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Hybrid sensor histidine kinase/response regulator; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
ALO39675.1 | lexA | UZ73_16205 | UZ73_16940 | Response regulator receiver protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | LexA family transcriptional regulator; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. | 0.444 |
ALO39675.1 | polA | UZ73_16205 | UZ73_05170 | Response regulator receiver protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family. | 0.717 |
ALO39675.1 | recA | UZ73_16205 | UZ73_01295 | Response regulator receiver protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | DNA recombination/repair protein RecA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. | 0.678 |
ALO39675.1 | uvrB | UZ73_16205 | UZ73_16955 | Response regulator receiver protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Excinuclease ABC subunit B; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate [...] | 0.689 |
ALO39803.1 | lexA | UZ73_16945 | UZ73_16940 | GCN5 family acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. | LexA family transcriptional regulator; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. | 0.521 |
ALO39803.1 | uvrB | UZ73_16945 | UZ73_16955 | GCN5 family acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Excinuclease ABC subunit B; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate [...] | 0.418 |
ALO40058.1 | lexA | UZ73_18370 | UZ73_16940 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | LexA family transcriptional regulator; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. | 0.611 |
ALO40058.1 | polA | UZ73_18370 | UZ73_05170 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family. | 0.886 |
ALO40058.1 | recA | UZ73_18370 | UZ73_01295 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | DNA recombination/repair protein RecA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. | 0.835 |
dinB | lexA | UZ73_10220 | UZ73_16940 | DNA polymerase IV; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII. | LexA family transcriptional regulator; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. | 0.710 |