STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
pdhRPyruvate dehydrogenase complex repressor; Transcriptional repressor for the pyruvate dehydrogenase complex genes aceEF and lpd. (254 aa)    
Predicted Functional Partners:
aceF
Pyruvate dehydrogenase, dihydrolipoyltransacetylase component E2; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). It contains multiple copies of three enzymatic components: pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2) and lipoamide dehydrogenase (E3).
  
 
 0.899
aceE
Pyruvate dehydrogenase, decarboxylase component E1, thiamine triphosphate-binding; Component of the pyruvate dehydrogenase (PDH) complex, that catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2).
  
 
 0.895
lpd
Dihydrolipoyl dehydrogenase; Lipoamide dehydrogenase is a component of the glycine cleavage system as well as of the alpha-ketoacid dehydrogenase complexes.
  
 
 0.876
fadR
Fatty acid metabolism regulon transcriptional regulator; Multifunctional regulator of fatty acid metabolism. Represses transcription of at least eight genes required for fatty acid transport and beta-oxidation including fadA, fadB, fadD, fadL and fadE. Activates transcription of at least three genes required for unsaturated fatty acid biosynthesis: fabA, fabB and iclR, the gene encoding the transcriptional regulator of the aceBAK operon encoding the glyoxylate shunt enzymes.
  
  
 0.724
mngR
Transcriptional repressor for the mannosyl-D-glycerate catabolic operon; Represses mngA and mngB. Regulates its own expression.
  
    0.694
ndh
Respiratory NADH dehydrogenase 2/cupric reductase; Transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. Does not couple the redox reaction to proton translocation.
   
  
 0.634
crp
cAMP-activated global transcription factor, mediator of catabolite repression; A global transcription regulator. Complexes with cyclic AMP (cAMP) which allosterically activates DNA binding (to consensus sequence 5'-AAATGTGATCTAGATCACATTT-3') to directly regulate the transcription of about 300 genes in about 200 operons and indirectly regulate the expression of about half the genome. There are 3 classes of CRP promoters; class I promoters have a single CRP-binding site upstream of the RNA polymerase (RNAP)-binding site, whereas in class II promoters the single CRP- and RNAP-binding site [...]
   
  
 0.629
iclR
Transcriptional repressor; Regulation of the glyoxylate bypass operon (aceBAK), which encodes isocitrate lyase, malate synthase as well as isocitrate dehydrogenase kinase/phosphorylase. Glyoxylate disrupts the interaction with the promoter by favoring the inactive dimeric form. Pyruvate enhances promoter binding by stabilizing the tetrameric form.
   
  
 0.625
cra
Transcriptional repressor-activator for carbon metabolism; Global transcriptional regulator, which plays an important role in the regulation of carbon metabolism. Activates transcription of genes encoding biosynthetic and oxidative enzymes (involved in Krebs cycle, glyoxylate shunt and gluconeogenesis, such as ppsA and fbp). Represses genes involved in sugar catabolism, such as fruB, pfkA, pykF and adhE. Binds asymmetrically to the two half-sites of its operator.
  
   
 0.612
lldP
L-lactate permease; Transports L-lactate across the membrane. Can also transport D-lactate and glycolate. Seems to be driven by a proton motive force.
  
 0.548
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (28%) [HD]