STRING protein interaction network
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
speDS-adenosylmethionine decarboxylase proenzyme; Catalyzes the decarboxylation of S-adenosylmethionine to S- adenosylmethioninamine (dcAdoMet), the propylamine donor required for the synthesis of the polyamines spermine and spermidine from the diamine putrescine (264 aa)    
Predicted Functional Partners:
Spermidine synthase (putrescine aminopropyltransferase); Involved in the biosynthesis of polyamines which play a significant role in the structural and functional organization in the chromoid of E.coli by compacting DNA and neutralizing negative charges. Catalyzes the irreversible transfer (ping-pong mechanism) of a propylamine group from the amino donor S-adenosylmethioninamine (decarboxy-AdoMet) to putrescine (1,4-diaminobutane) to yield spermidine. Cadaverine (1,5-diaminopentane) and spermidine can also be used as the propylamine acceptor
S-adenosylmethionine synthetase; Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme Is essential for growth
Dna (cytosine-5)-methyltransferase 1; This methylase recognizes the double-stranded sequence CCWGG, causes specific methylation on C-2 on both strands
Fructose-6-phosphate aldolase 2; Catalyzes the reversible formation of fructose 6-phosphate from dihydroxyacetone and D-glyceraldehyde 3-phosphate via an aldolization reaction. Can utilize hydroxyacetone as an alternative donor substrate. Is also able to catalyze the direct self-aldol addition of glycolaldehyde. Is less catalytically efficient than the isozyme FsaA. Does not display transaldolase activity
annotation not available
Agmatinase; Catalyzes the formation of putrescine from agmatine
Ornithine decarboxylase isozyme, inducible; Belongs to the Orn/Lys/Arg decarboxylase class-I family
Adenosylcobinamide-gdp ribazoletransferase; Joins adenosylcobinamide-GDP and alpha-ribazole to generate adenosylcobalamin (Ado-cobalamin). Also synthesizes adenosylcobalamin 5'-phosphate from adenosylcobinamide-GDP and alpha-ribazole 5'- phosphate (By similarity)
Putrescine abc transporter membrane subunit poti; Required for the activity of the bacterial periplasmic transport system of putrescine
Aspartate 1-decarboxylase proenzyme; Catalyzes the pyruvoyl-dependent decarboxylation of aspartate to produce beta-alanine
Your Current Organism:
Escherichia coli K12 MG1655
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli K12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (5%) [HD]