STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ycjPPutative sugar ABC transporter permease; Probably part of the binding-protein-dependent transport system YcjNOP. Probably responsible for the translocation of the substrate across the membrane; Belongs to the binding-protein-dependent transport system permease family. MalFG subfamily. (280 aa)    
Predicted Functional Partners:
ycjN
Putative ABC sugar transporter periplasmic binding protein; Probably part of the binding-protein-dependent transport system YcjNOP; Belongs to the bacterial solute-binding protein 1 family.
 
 0.999
ycjO
Putative sugar ABC transporter permease; Probably part of the binding-protein-dependent transport system YcjNOP. Probably responsible for the translocation of the substrate across the membrane; Belongs to the binding-protein-dependent transport system permease family. MalFG subfamily.
 0.999
ycjS
Putative NADH-binding oxidoreductase; Catalyzes the NADH-dependent reduction of the oxo group at C3 of 3-dehydro-D-glucosides leading to D-glucosides. Probably functions in a metabolic pathway that transforms D-gulosides to D-glucosides. Can use 3-dehydro-D-glucose, methyl alpha-3-dehydro-D-glucoside and methyl beta-3-dehydro-D-glucoside as substrates in vitro. However, the actual specific physiological substrates for this metabolic pathway are unknown. To a lesser extent, is also able to catalyze the reverse reactions, i.e. the NAD(+)-dependent oxidation of the hydroxyl group at C3 of [...]
 
  
 0.983
ycjQ
Putative Zn-dependent NAD(P)-binding oxidoreductase; Catalyzes the NAD(+)-dependent oxidation of the hydroxyl group at C3 of D-gulosides leading to 3-dehydro-D-gulosides. Probably functions in a metabolic pathway that transforms D-gulosides to D- glucosides. Is also able to catalyze the reverse reactions, i.e. the NADH-dependent reduction of the oxo group at C3 of 3-dehydro-D- gulosides leading to D-gulosides. In vitro, can oxidize D-gulose and methyl beta-D-guloside, and reduce methyl alpha-3-dehydro-D-guloside and methyl beta-3-dehydro-D-guloside. However, the actual specific physiol [...]
 
  
 0.982
ycjR
Putative TIM alpha/beta barrel enzyme; Catalyzes the epimerization at C4 of 3-dehydro-D-gulosides leading to 3-dehydro-D-glucosides. Probably functions in a metabolic pathway that transforms D-gulosides to D-glucosides. Can use methyl alpha-3-dehydro-D-glucoside and methyl beta-3-dehydro-D-glucoside as substrates in vitro. However, the actual specific physiological substrates for this metabolic pathway are unknown. Cannot act on D- psicose, D-fructose, D-tagatose, D-sorbose, L-xylulose, or L-ribulose. Belongs to the hyi family.
 
  
 0.979
ycjM
Alpha amylase catalytic domain family protein; Catalyzes the reversible phosphorolysis of glucosylglycerate into alpha-D-glucose 1-phosphate (Glc1P) and D-glycerate (also called (R)-glycerate). May be a regulator of intracellular levels of glucosylglycerate, a compatible solute that primarily protects organisms facing salt stress and very specific nutritional constraints. Cannot catalyze the phosphorolysis of sucrose. Does not act on other sugars such as alpha-D-galactose 1-phosphate, alpha-D-mannose 1- phosphate or beta-D-glucose 1-phosphate; in vitro D-erythronate can substitue for D [...]
 
  
 0.965
ycjT
Putative family 65 glycosyl hydrolase; In vitro catalyzes the phosphorolysis of D-kojibiose into beta-D-glucose 1-phosphate and D-glucose. No other disaccharides tested substitute for D-kojibiose. In the reverse direction disaccharides can be formed from beta-D-glucose 1-phosphate plus D-glucose, L-sorbose, D- sorbitol, L-iditol or 1,5-anhydro-D-glucitol, but with low efficiency. The beta-D-glucose 1-phosphate product is the substrate for YcjU (AC P77366), the next apparent enzyme in the putative biochemical pathway encoded in this locus (yjcM to ycjW).
 
  
 0.965
ugpA
Sn-glycerol-3-phosphate ABC transporter permease; Part of the binding-protein-dependent transport system for sn-glycerol-3-phosphate; probably responsible for the translocation of the substrate across the membrane.
 0.965
ugpC
Sn-glycerol-3-phosphate ABC transporter ATPase; Part of the ABC transporter complex UgpABCE involved in sn- glycerol-3-phosphate import. Responsible for energy coupling to the transport system (Probable). Can also transport glycerophosphoryl diesters.
 0.958
malK
Maltose ABC transportor ATPase; Part of the ABC transporter complex MalEFGK involved in maltose/maltodextrin import. Responsible for energy coupling to the transport system; Belongs to the ABC transporter superfamily. Maltooligosaccharide importer (TC 3.A.1.1.1) family.
 0.958
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (18%) [HD]