STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rndRibonuclease d; Exonuclease involved in the 3' processing of various precursor tRNAs. Initiates hydrolysis at the 3'-terminus of an RNA molecule and releases 5'-mononucleotides (375 aa)    
Predicted Functional Partners:
rnb
Exoribonuclease ii; Involved in mRNA degradation. Hydrolyzes single-stranded polyribonucleotides processively in the 3' to 5' direction . RNases 2 and R (rnr) contribute to rRNA degradation during starvation, while RNase R and PNPase (pnp) are the major contributors to quality control of rRNA during steady state growth . This RNase is required to decrease expression of RNase PH (rnp) at 42 degrees Celsius during starvation, which in turn represses rRNA degradation
   
 
 0.959
rnpA
Ribonuclease p protein component; RNaseP catalyzes the removal of the 5'-leader sequence from pre-tRNA to produce the mature 5'-terminus. It can also cleave other RNA substrates such as 4.5S RNA. The protein component plays an auxiliary but essential role in vivo by binding to the 5'-leader sequence and broadening the substrate specificity of the ribozyme
 
  
 0.937
rnt
Trims short 3' overhangs of a variety of RNA species, leaving a one or two nucleotide 3' overhang. Responsible for the end-turnover of tRNA: specifically removes the terminal AMP residue from uncharged tRNA (tRNA-C-C-A). Also appears to be involved in tRNA biosynthesis, especially in strains lacking other exoribonucleases
  
 
 0.934
rne
Endoribonuclease that plays a central role in RNA processing and decay. Required for the maturation of 5S and 16S rRNAs and the majority of tRNAs. Also involved in the degradation of most mRNAs. Can also process other RNA species, such as RNAI, a molecule that controls the replication of ColE1 plasmid, and the cell division inhibitor DicF- RNA. It initiates the decay of RNAs by cutting them internally near their 5'-end. It is able to remove poly(A) tails by an endonucleolytic process. Required to initiate rRNA degradation during both starvation and quality control; acts after RNase PH [...]
   
 
 0.923
rpsA
Required for translation of most natural mRNAs except for leaderless mRNA Binds mRNA upstream of the Shine- Dalgarno (SD) sequence and helps it bind to the 30S ribosomal subunit; acts as an RNA chaperone to unfold structured mRNA on the ribosome but is not essential for mRNAs with strong SDs and little 5'-UTR structure, thus it may help fine-tune which mRNAs that are translated . Unwinds dsRNA by binding to transiently formed ssRNA regions; binds about 10 nucleotides . Has a preference for polypyrimidine tracts . Negatively autoregulates its own translation . In case of infection by ba [...]
  
 0.919
pnp
Polynucleotide phosphorylase/polyadenylase; Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction. Also involved, along with RNase II, in tRNA processing. RNases II and R contribute to rRNA degradation during starvation, while RNase R and PNPase are the major contributors to quality control of rRNA during steady state growth
   
 
 0.913
rnr
Exoribonuclease r, rnase r; 3'-5' exoribonuclease that releases 5'-nucleoside monophosphates and is involved in maturation of structured RNAs (rRNAs, tRNAs and SsrA/tmRNA). In stationary phase, involved in the post- transcriptional regulation of ompA mRNA stability. Shortens RNA processively to di- and trinucleotides. In vitro, exhibits helicase activity, which is independent of its RNase activity. RNases 2 and R (rnb and this entry) contribute to rRNA degradation during starvation, while RNase R and PNPase (this entry and pnp) are the major contributors to quality control of rRNA duri [...]
   
 
 0.901
rtcA
Catalyzes the conversion of 3'-phosphate to a 2',3'-cyclic phosphodiester at the end of RNA. The mechanism of action of the enzyme occurs in 3 steps: (A) adenylation of the enzyme by ATP; (B) transfer of adenylate to an RNA-N3'P to produce RNA-N3'PP5'A; (C) and attack of the adjacent 2'-hydroxyl on the 3'-phosphorus in the diester linkage to produce the cyclic end product. The biological role of this enzyme is unknown but it is likely to function in some aspects of cellular RNA processing
   
 0.884
rpsD
Small subunit ribosomal protein s4; One of two assembly initiator proteins for the 30S subunit, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. Plays a role in mRNA unwinding by the ribosome, possibly by forming part of a processivity clamp. Also functions as a rho-dependent antiterminator of rRNA transcription, increasing the synthesis of rRNA under conditions of excess protein, allowing a more rapid return to homeostasis. Binds directly to RNA polymerase
   
 0.874
fadD
Acyl-coa synthetase (long-chain-fatty-acid--coa ligase); Catalyzes the esterification, concomitant with transport, of exogenous long-chain fatty acids into metabolically active CoA thioesters for subsequent degradation or incorporation into phospholipids. Activity is the highest with fatty acid substrates of > 10 carbon atoms . Is involved in the aerobic beta- oxidative degradation of fatty acids, which allows aerobic growth of E.coli on fatty acids as a sole carbon and energy source
 
  
 0.862
Your Current Organism:
Escherichia coli K12 MG1655
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli K12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (36%) [HD]