STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
tapMethyl-accepting protein IV; Mediates taxis toward dipeptides via an interaction with the periplasmic dipeptide-binding protein. (533 aa)    
Predicted Functional Partners:
cheB
Protein-glutamate methylesterase/protein-glutamine glutaminase; Involved in chemotaxis. Part of a chemotaxis signal transduction system that modulates chemotaxis in response to various stimuli. Catalyzes the demethylation of specific methylglutamate residues introduced into the chemoreceptors (methyl-accepting chemotaxis proteins or MCP) by CheR. Also mediates the irreversible deamidation of specific glutamine residues to glutamic acid. Catalyzes its own deactivation by removing the activating phosphoryl group. Belongs to the CheB family.
 
 0.999
cheR
Chemotaxis regulator, protein-glutamate methyltransferase; Methylation of the membrane-bound methyl-accepting chemotaxis proteins (MCP) to form gamma-glutamyl methyl ester residues in MCP.
 
 0.999
cheW
Purine-binding chemotaxis protein; Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. It physically bridges CheA to the MCPs (methyl-accepting chemotaxis proteins) to allow regulated phosphotransfer to CheY and CheB.
 
 0.999
cheA
Chemotaxis protein CheA; Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. CheA is autophosphorylated; it can transfer its phosphate group to either CheB or CheY.
 
 0.999
cheY
Chemotaxis regulator transmitting signal to flagellar motor component; Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. In its active (phosphorylated or acetylated) form, CheY exhibits enhanced binding to a switch component, FliM, at the flagellar motor which induces a change from counterclockwise to clockwise flagellar rotation. Overexpression of CheY in association with MotA and MotB improves motility of a ycgR disruption, suggesting there is an interaction (direct or indirect) between the c-di-GMP-binding flagellar brake protein and th [...]
 0.997
tar
Methyl-accepting chemotaxis protein II; Receptor for the attractant L-aspartate and related amino and dicarboxylic acids. Tar also mediates taxis to the attractant maltose via an interaction with the periplasmic maltose binding protein. Tar mediates taxis away from the repellents cobalt and nickel.
 
  
0.984
motB
Protein that enables flagellar motor rotation; MotA and MotB comprise the stator element of the flagellar motor complex. Required for the rotation of the flagellar motor. Probably a linker that fastens the torque-generating machinery to the cell wall. Overexpression of this protein with MotA improves motility in a pdeH disruption, (a c-di-GMP phosphodiesterase) suggesting there is an interaction (direct or indirect) between the c-di-GMP-binding flagellar brake protein YcgR and the flagellar stator.
  
  
 0.978
cheZ
Chemotaxis regulator, protein phosphatase for CheY; Plays an important role in bacterial chemotaxis signal transduction pathway by accelerating the dephosphorylation of phosphorylated CheY (CheY-P); Belongs to the CheZ family.
 
  
 0.976
motA
Proton conductor component of flagella motor; MotA and MotB comprise the stator element of the flagellar motor complex. Required for rotation of the flagellar motor. Probable transmembrane proton channel. Overexpression of MotA, with or without MotB, restores motility in a pdeH disruption, (a c-di-GMP phosphodiesterase) suggesting there is an interaction (direct or indirect) between the c-di-GMP-binding flagellar brake protein YcgR and the flagellar stator.
 
  
 0.956
fliS
Flagellar biosynthesis; repressor of class 3a and 3b operons (RflA activity); Protein involved in flagellum assembly and taxis.
   
  
 0.921
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (18%) [HD]