close STRING Database User Survey
Please help us improve further — take a moment to fill our brief user survey.
STRING protein interaction network
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
folEGtp cyclohydrolase ia; Belongs to the GTP cyclohydrolase I family (222 aa)    
Predicted Functional Partners:
6-pyruvoyltetrahydropterin/6-carboxytetrahydropterin synthase; Catalyzes the conversion of 7,8-dihydroneopterin triphosphate (H2NTP) to 6-carboxy-5,6,7,8-tetrahydropterin (CPH4) and acetaldehyde. Can also convert 6-pyruvoyltetrahydropterin (PPH4) and sepiapterin to CPH4; these 2 compounds are probably intermediates in the reaction from H2NTP
Gtp cyclohydrolase ii; Catalyzes the conversion of GTP to 2,5-diamino-6- ribosylamino-4(3H)-pyrimidinone 5'-phosphate (DARP), formate and pyrophosphate
2-amino-4-hydroxy-6-hydroxymethyldihydropteridine diphosphokinase; Belongs to the HPPK family
D-erythro-7,8-dihydroneopterin triphosphate 2'-epimerase and dihydroneopterin aldolase; Catalyzes the epimerization of carbon 2' of the side chain of 7,8-dihydroneopterin triphosphate (H2NTP) to form 7,8-dihydromonapterin triphosphate (H2MTP) . Is required for tetrahydromonapterin biosynthesis, a major pterin in E.coli
DUF418 family putative inner membrane protein; Involved in transport
7-cyano-7-deazaguanine reductase (NADPH-dependent); Catalyzes the NADPH-dependent reduction of 7-cyano-7- deazaguanine (preQ0) to 7-aminomethyl-7-deazaguanine (preQ1), a late step in the queuosine pathway. Is highly specific for its natural substrate preQ0, since it cannot use various aliphatic, aromatic, benzylic and heterocyclic nitriles, such as acetonitrile, benzonitrile, benzylcyanide and 2-cyanopyrrole, although it can reduce the substrate analog 5-cyanopyrrolo[2,3-d]pyrimidin-4-one with lesser efficiency
Bifunctional folylpolyglutamate synthetase/dihydrofolate synthetase; Functions in two distinct reactions of the de novo folate biosynthetic pathway. Catalyzes the addition of a glutamate residue to dihydropteroate (7,8-dihydropteroate or H2Pte) to form dihydrofolate (7,8-dihydrofolate monoglutamate or H2Pte-Glu). Also catalyzes successive additions of L-glutamate to tetrahydrofolate or 10- formyltetrahydrofolate or 5,10-methylenetetrahydrofolate, leading to folylpolyglutamate derivatives
7-cyano-7-deazaguanine (preQ0) synthase; Catalyzes the ATP-dependent conversion of 7-carboxy-7- deazaguanine (CDG) to 7-cyano-7-deazaguanine (preQ(0))
Putative 7-carboxy-7-deazaguanine synthase quee; Catalyzes the complex heterocyclic radical-mediated conversion of 6-carboxy-5,6,7,8-tetrahydropterin (CPH4) to 7-carboxy-7- deazaguanine (CDG), a step common to the biosynthetic pathways of all 7-deazapurine-containing compounds
7,8-dihydropteroate synthase; Catalyzes the condensation of para-aminobenzoate (pABA) with 6-hydroxymethyl-7,8-dihydropterin diphosphate (DHPt-PP) to form 7,8- dihydropteroate (H2Pte), the immediate precursor of folate derivatives
Your Current Organism:
Escherichia coli K12 MG1655
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli K12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (10%) [HD]