STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
murPPTS system N-acetylmuramic acid-specific EIIBC component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in N-acetylmuramic acid (MurNAc) transport, yielding cytoplasmic MurNAc-6-P. Is responsible for growth on MurNAc as the sole source of carbon and energy. Is also able to take up anhydro-N-acetylmuramic acid (anhMurNAc), but cannot phosphorylate the carbon 6, pr [...] (474 aa)    
Predicted Functional Partners:
murQ
N-acetylmuramic acid 6-phosphate etherase; Specifically catalyzes the cleavage of the D-lactyl ether substituent of MurNAc 6-phosphate, producing GlcNAc 6- phosphate and D-lactate. Is required for growth on MurNAc as the sole source of carbon and energy. Together with AnmK, is also required for the utilization of anhydro-N-acetylmuramic acid (anhMurNAc) either imported from the medium or derived from its own cell wall murein, and thus plays a role in cell wall recycling
 
 
 0.999
crr
PTS system glucose-specific EIIA component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II complex composed of PtsG and Crr is involved in glucose transport. The non-phosphorylated EIII-Glc is an inhibitor for uptake of certain sugars such as maltose, melibiose, lactose, and glycerol. Phosphorylated EIII-Glc, however, may be an activator for adenylate cyclase. It is an impo [...]
 
 0.983
murR
HTH-type transcriptional regulator MurR; Represses the expression of the murPQ operon involved in the uptake and degradation of N-acetylmuramic acid (MurNAc). Binds to two adjacent inverted repeats within the operator region. MurNAc 6-phosphate, the substrate of MurQ, is the specific inducer that weakens binding of MurR to the operator. Also represses its own transcription
 
  
 0.975
yfeW
UPF0214 protein YfeW; Putative beta-lactamase; Protein involved in carbohydrate catabolic process; Belongs to the UPF0214 family
     
 0.973
ptsH
Phosphocarrier protein HPr; General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The phosphoryl group from phosphoenolpyruvate (PEP) is transferred to the phosphoryl carrier protein HPr by enzyme I. Phospho-HPr then transfers it to the PTS EIIA domain
    
 0.916
nagE
PTS system N-acetylglucosamine-specific EIICBA component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in N- acetylglucosamine transport. It can also transport and phosphorylate the antibiotic streptozotocin. Could play a significant role in the recycling of peptidoglycan
 
 0.880
ulaB
Ascorbate-specific PTS system EIIB component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II UlaABC PTS system is involved in ascorbate transport
   
  
 0.812
ldcA
Murein tetrapeptide carboxypeptidase; Releases the terminal D-alanine residue from the cytoplasmic tetrapeptide recycling product L-Ala-gamma-D-Glu-meso- Dap-D-Ala. To a lesser extent, can also cleave D-Ala from murein derivatives containing the tetrapeptide, i.e. MurNAc-tetrapeptide, UDP-MurNAc-tetrapeptide, GlcNAc-MurNAc-tetrapeptide, and GlcNAc- anhMurNAc-tetrapeptide. Does not act on murein sacculi or cross- linked muropeptides. The tripeptides produced by the LcdA reaction can then be reused as peptidoglycan building blocks; LcdA is thereby involved in murein recycling. Is also es [...]
      
 0.780
nagZ
Beta-hexosaminidase; Plays a role in peptidoglycan recycling by cleaving the terminal beta-1,4-linked N-acetylglucosamine (GlcNAc) from peptide-linked peptidoglycan fragments, giving rise to free GlcNAc, anhydro-N-acetylmuramic acid and anhydro-N-acetylmuramic acid-linked peptides. Cleaves GlcNAc linked beta-1,4 to MurNAc tripeptides
     
 0.763
frwA
Multiphosphoryl transfer protein 2; Multifunctional protein that includes general (non sugar-specific) and sugar-specific components of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II FrwABC PTS system is involved in fructose transport
  
 
 0.756
Your Current Organism:
Escherichia coli K12 MG1655
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli K12 MG1655, Escherichia coli K12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (5%) [HD]