STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
nrdIDimanganese-tyrosyl radical cofactor maintenance flavodoxin nrdi; Probably involved in ribonucleotide reductase function (136 aa)    
Predicted Functional Partners:
nrdH
Hydrogen donor for nrdef electron transport system; Electron transport system for the ribonucleotide reductase system NrdEF
 
  
 0.999
nrdE
Ribonucleoside-diphosphate reductase 2, alpha subunit; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R1E contains the binding sites for both substrates and allosteric effectors and carries out the actual reduction of the ribonucleotide
 
  
 0.999
nrdF
Ribonucleoside-diphosphate reductase 2, beta subunit, ferritin-like protein; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R2F contains the tyrosyl radical required for catalysis
 
 
 0.999
nrdB
Ribonucleoside-diphosphate reductase 1, beta subunit, ferritin-like protein; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R2 contains the tyrosyl radical required for catalysis
  
 
 0.914
yfaE
annotation not available
      
 0.878
nrdD
Ribonucleoside-triphosphate reductase (formate); Catalyzes the conversion of ribonucleotides into deoxyribonucleotides, which are required for DNA synthesis and repair
     
 0.873
nrdG
Anaerobic ribonucleoside-triphosphate reductase activating protein; Activation of anaerobic ribonucleoside-triphosphate reductase under anaerobic conditions by generation of an organic free radical, using S-adenosylmethionine and reduced flavodoxin as cosubstrates to produce 5'-deoxy-adenosine
     
 0.862
nrdA
Ribonucleoside-diphosphate reductase 1, alpha subunit; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R1 contains the binding sites for both substrates and allosteric effectors and carries out the actual reduction of the ribonucleotide. It also provides redox-active cysteines
  
  
 0.831
yegJ
annotation not available
      
 0.784
ygaC
annotation not available
     
 0.717
Your Current Organism:
Escherichia coli K12 MG1655
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli K12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (3%) [HD]