STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
nrdFRibonucleoside-diphosphate reductase 2, beta subunit, ferritin-like protein; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R2F contains the tyrosyl radical required for catalysis; Belongs to the ribonucleoside diphosphate reductase small chain family. (319 aa)    
Predicted Functional Partners:
nrdI
NrdEF cluster assembly flavodoxin; Probably involved in ribonucleotide reductase function. Belongs to the NrdI family.
 
 
 0.999
nrdE
Ribonucleoside-diphosphate reductase 2, alpha subunit; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R1E contains the binding sites for both substrates and allosteric effectors and carries out the actual reduction of the ribonucleotide; Belongs to the ribonucleoside diphosphate reductase large chain family.
 0.999
nrdA
Ribonucleoside-diphosphate reductase 1, alpha subunit; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R1 contains the binding sites for both substrates and allosteric effectors and carries out the actual reduction of the ribonucleotide. It also provides redox-active cysteines.
  
 0.998
nrdH
Hydrogen donor for NrdEF electron transport system; Electron transport system for the ribonucleotide reductase system NrdEF; Belongs to the glutaredoxin family.
 
 
 0.998
nrdB
Ribonucleoside-diphosphate reductase 1, beta subunit, ferritin-like protein; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R2 contains the tyrosyl radical required for catalysis; Belongs to the ribonucleoside diphosphate reductase small chain family.
  
  
0.938
tmk
Thymidylate kinase; Catalyzes the reversible phosphorylation of deoxythymidine monophosphate (dTMP) to deoxythymidine diphosphate (dTDP), using ATP as its preferred phosphoryl donor. Situated at the junction of both de novo and salvage pathways of deoxythymidine triphosphate (dTTP) synthesis, is essential for DNA synthesis and cellular growth; Belongs to the thymidylate kinase family.
   
 
 0.926
adk
Adenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family.
     
 0.915
cmk
Cytidylate kinase; ATP, dATP, and GTP are equally effective as phosphate donors. CMP and dCMP are the best phosphate acceptors. Belongs to the cytidylate kinase family. Type 1 subfamily.
    
 0.913
ndk
Nucleoside diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate.
     
 0.910
pykF
Pyruvate kinase I (formerly F), fructose stimulated; Protein involved in glycolysis, fermentation and anaerobic respiration.
     
 0.906
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (30%) [HD]