node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
amtB | glnA | b0451 | b3870 | Ammonium transporter; Involved in the uptake of ammonia; Belongs to the ammonia transporter channel (TC 1.A.11.2) family. | Glutamine synthetase; Catalyzes the ATP-dependent biosynthesis of glutamine from glutamate and ammonia. | 0.952 |
amtB | glnB | b0451 | b2553 | Ammonium transporter; Involved in the uptake of ammonia; Belongs to the ammonia transporter channel (TC 1.A.11.2) family. | Regulatory protein P-II for glutamine synthetase; P-II indirectly controls the transcription of the glutamine synthetase gene (glnA). P-II prevents NR-II-catalyzed conversion of NR- I to NR-I-phosphate, the transcriptional activator of GlnA. When P-II is uridylylated to P-II-UMP, these events are reversed. When the ratio of Gln to 2-ketoglutarate decreases, P-II is uridylylated to P-II-UMP, which causes the deadenylation of glutamine synthetase by GlnE, so activating the enzyme; Belongs to the P(II) protein family. | 0.999 |
amtB | glnD | b0451 | b0167 | Ammonium transporter; Involved in the uptake of ammonia; Belongs to the ammonia transporter channel (TC 1.A.11.2) family. | Uridylyltransferase; Modifies, by uridylylation and deuridylylation, the PII regulatory proteins GlnB and GlnK, in response to the nitrogen status of the cell that GlnD senses through the glutamine level. Under low glutamine levels, catalyzes the conversion of the PII proteins and UTP to PII-UMP and PPi, while under higher glutamine levels, GlnD hydrolyzes PII-UMP to PII and UMP (deuridylylation). Thus, controls uridylylation state and activity of the PII proteins, and plays an important role in the regulation of nitrogen assimilation and metabolism. | 0.945 |
amtB | glnG | b0451 | b3868 | Ammonium transporter; Involved in the uptake of ammonia; Belongs to the ammonia transporter channel (TC 1.A.11.2) family. | DNA-binding transcriptional regulator NtrC; Member of the two-component regulatory system NtrB/NtrC, which controls expression of the nitrogen-regulated (ntr) genes in response to nitrogen limitation. Phosphorylated NtrC binds directly to DNA and stimulates the formation of open promoter-sigma54-RNA polymerase complexes. Activates transcription of many genes and operons whose products minimize the slowing of growth under nitrogen-limiting conditions, including genes coding for glutamine synthetase (glnA), transporters, amino acid permeases and catabolic enzymes. | 0.924 |
amtB | glnK | b0451 | b0450 | Ammonium transporter; Involved in the uptake of ammonia; Belongs to the ammonia transporter channel (TC 1.A.11.2) family. | Nitrogen assimilation regulatory protein for GlnL, GlnE, and AmtB; P-II indirectly controls the transcription of the glutamine synthetase gene (glnA). P-II prevents NR-II-catalyzed conversion of NR- I to NR-I-phosphate, the transcriptional activator of GlnA. When P-II is uridylylated to P-II-UMP, these events are reversed. When the ratio of Gln to 2-ketoglutarate decreases, P-II is uridylylated to P-II-UMP, which causes the deadenylation of glutamine synthetase by GlnE, so activating the enzyme (By similarity); Belongs to the P(II) protein family. | 0.999 |
amtB | glnL | b0451 | b3869 | Ammonium transporter; Involved in the uptake of ammonia; Belongs to the ammonia transporter channel (TC 1.A.11.2) family. | Sensory histidine kinase in two-component regulatory system with GlnG; Member of the two-component regulatory system NtrB/NtrC, which controls expression of the nitrogen-regulated (ntr) genes in response to nitrogen limitation. Under conditions of nitrogen limitation, NtrB autophosphorylates and transfers the phosphoryl group to NtrC. In the presence of nitrogen, acts as a phosphatase that dephosphorylates and inactivates NtrC. | 0.985 |
amtB | rpoN | b0451 | b3202 | Ammonium transporter; Involved in the uptake of ammonia; Belongs to the ammonia transporter channel (TC 1.A.11.2) family. | RNA polymerase, sigma 54 (sigma N) factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is responsible for the expression of enzymes involved in arginine catabolism. The open complex (sigma-54 and core RNA polymerase) serves as the receptor for the receipt of the melting signal from the remotely bound activator protein GlnG(NtrC). | 0.597 |
glnA | amtB | b3870 | b0451 | Glutamine synthetase; Catalyzes the ATP-dependent biosynthesis of glutamine from glutamate and ammonia. | Ammonium transporter; Involved in the uptake of ammonia; Belongs to the ammonia transporter channel (TC 1.A.11.2) family. | 0.952 |
glnA | glnB | b3870 | b2553 | Glutamine synthetase; Catalyzes the ATP-dependent biosynthesis of glutamine from glutamate and ammonia. | Regulatory protein P-II for glutamine synthetase; P-II indirectly controls the transcription of the glutamine synthetase gene (glnA). P-II prevents NR-II-catalyzed conversion of NR- I to NR-I-phosphate, the transcriptional activator of GlnA. When P-II is uridylylated to P-II-UMP, these events are reversed. When the ratio of Gln to 2-ketoglutarate decreases, P-II is uridylylated to P-II-UMP, which causes the deadenylation of glutamine synthetase by GlnE, so activating the enzyme; Belongs to the P(II) protein family. | 0.968 |
glnA | glnD | b3870 | b0167 | Glutamine synthetase; Catalyzes the ATP-dependent biosynthesis of glutamine from glutamate and ammonia. | Uridylyltransferase; Modifies, by uridylylation and deuridylylation, the PII regulatory proteins GlnB and GlnK, in response to the nitrogen status of the cell that GlnD senses through the glutamine level. Under low glutamine levels, catalyzes the conversion of the PII proteins and UTP to PII-UMP and PPi, while under higher glutamine levels, GlnD hydrolyzes PII-UMP to PII and UMP (deuridylylation). Thus, controls uridylylation state and activity of the PII proteins, and plays an important role in the regulation of nitrogen assimilation and metabolism. | 0.937 |
glnA | glnG | b3870 | b3868 | Glutamine synthetase; Catalyzes the ATP-dependent biosynthesis of glutamine from glutamate and ammonia. | DNA-binding transcriptional regulator NtrC; Member of the two-component regulatory system NtrB/NtrC, which controls expression of the nitrogen-regulated (ntr) genes in response to nitrogen limitation. Phosphorylated NtrC binds directly to DNA and stimulates the formation of open promoter-sigma54-RNA polymerase complexes. Activates transcription of many genes and operons whose products minimize the slowing of growth under nitrogen-limiting conditions, including genes coding for glutamine synthetase (glnA), transporters, amino acid permeases and catabolic enzymes. | 0.965 |
glnA | glnK | b3870 | b0450 | Glutamine synthetase; Catalyzes the ATP-dependent biosynthesis of glutamine from glutamate and ammonia. | Nitrogen assimilation regulatory protein for GlnL, GlnE, and AmtB; P-II indirectly controls the transcription of the glutamine synthetase gene (glnA). P-II prevents NR-II-catalyzed conversion of NR- I to NR-I-phosphate, the transcriptional activator of GlnA. When P-II is uridylylated to P-II-UMP, these events are reversed. When the ratio of Gln to 2-ketoglutarate decreases, P-II is uridylylated to P-II-UMP, which causes the deadenylation of glutamine synthetase by GlnE, so activating the enzyme (By similarity); Belongs to the P(II) protein family. | 0.955 |
glnA | glnL | b3870 | b3869 | Glutamine synthetase; Catalyzes the ATP-dependent biosynthesis of glutamine from glutamate and ammonia. | Sensory histidine kinase in two-component regulatory system with GlnG; Member of the two-component regulatory system NtrB/NtrC, which controls expression of the nitrogen-regulated (ntr) genes in response to nitrogen limitation. Under conditions of nitrogen limitation, NtrB autophosphorylates and transfers the phosphoryl group to NtrC. In the presence of nitrogen, acts as a phosphatase that dephosphorylates and inactivates NtrC. | 0.998 |
glnA | rpoD | b3870 | b3067 | Glutamine synthetase; Catalyzes the ATP-dependent biosynthesis of glutamine from glutamate and ammonia. | RNA polymerase, sigma 70 (sigma D) factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth. Preferentially transcribes genes associated with fast growth, such as ribosomal operons, other protein-synthesis related genes, rRNA- and tRNA-encoding genes and prfB. Belongs to the sigma-70 factor family. RpoD/SigA subfamily. | 0.604 |
glnA | rpoN | b3870 | b3202 | Glutamine synthetase; Catalyzes the ATP-dependent biosynthesis of glutamine from glutamate and ammonia. | RNA polymerase, sigma 54 (sigma N) factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is responsible for the expression of enzymes involved in arginine catabolism. The open complex (sigma-54 and core RNA polymerase) serves as the receptor for the receipt of the melting signal from the remotely bound activator protein GlnG(NtrC). | 0.824 |
glnB | amtB | b2553 | b0451 | Regulatory protein P-II for glutamine synthetase; P-II indirectly controls the transcription of the glutamine synthetase gene (glnA). P-II prevents NR-II-catalyzed conversion of NR- I to NR-I-phosphate, the transcriptional activator of GlnA. When P-II is uridylylated to P-II-UMP, these events are reversed. When the ratio of Gln to 2-ketoglutarate decreases, P-II is uridylylated to P-II-UMP, which causes the deadenylation of glutamine synthetase by GlnE, so activating the enzyme; Belongs to the P(II) protein family. | Ammonium transporter; Involved in the uptake of ammonia; Belongs to the ammonia transporter channel (TC 1.A.11.2) family. | 0.999 |
glnB | glnA | b2553 | b3870 | Regulatory protein P-II for glutamine synthetase; P-II indirectly controls the transcription of the glutamine synthetase gene (glnA). P-II prevents NR-II-catalyzed conversion of NR- I to NR-I-phosphate, the transcriptional activator of GlnA. When P-II is uridylylated to P-II-UMP, these events are reversed. When the ratio of Gln to 2-ketoglutarate decreases, P-II is uridylylated to P-II-UMP, which causes the deadenylation of glutamine synthetase by GlnE, so activating the enzyme; Belongs to the P(II) protein family. | Glutamine synthetase; Catalyzes the ATP-dependent biosynthesis of glutamine from glutamate and ammonia. | 0.968 |
glnB | glnD | b2553 | b0167 | Regulatory protein P-II for glutamine synthetase; P-II indirectly controls the transcription of the glutamine synthetase gene (glnA). P-II prevents NR-II-catalyzed conversion of NR- I to NR-I-phosphate, the transcriptional activator of GlnA. When P-II is uridylylated to P-II-UMP, these events are reversed. When the ratio of Gln to 2-ketoglutarate decreases, P-II is uridylylated to P-II-UMP, which causes the deadenylation of glutamine synthetase by GlnE, so activating the enzyme; Belongs to the P(II) protein family. | Uridylyltransferase; Modifies, by uridylylation and deuridylylation, the PII regulatory proteins GlnB and GlnK, in response to the nitrogen status of the cell that GlnD senses through the glutamine level. Under low glutamine levels, catalyzes the conversion of the PII proteins and UTP to PII-UMP and PPi, while under higher glutamine levels, GlnD hydrolyzes PII-UMP to PII and UMP (deuridylylation). Thus, controls uridylylation state and activity of the PII proteins, and plays an important role in the regulation of nitrogen assimilation and metabolism. | 0.999 |
glnB | glnG | b2553 | b3868 | Regulatory protein P-II for glutamine synthetase; P-II indirectly controls the transcription of the glutamine synthetase gene (glnA). P-II prevents NR-II-catalyzed conversion of NR- I to NR-I-phosphate, the transcriptional activator of GlnA. When P-II is uridylylated to P-II-UMP, these events are reversed. When the ratio of Gln to 2-ketoglutarate decreases, P-II is uridylylated to P-II-UMP, which causes the deadenylation of glutamine synthetase by GlnE, so activating the enzyme; Belongs to the P(II) protein family. | DNA-binding transcriptional regulator NtrC; Member of the two-component regulatory system NtrB/NtrC, which controls expression of the nitrogen-regulated (ntr) genes in response to nitrogen limitation. Phosphorylated NtrC binds directly to DNA and stimulates the formation of open promoter-sigma54-RNA polymerase complexes. Activates transcription of many genes and operons whose products minimize the slowing of growth under nitrogen-limiting conditions, including genes coding for glutamine synthetase (glnA), transporters, amino acid permeases and catabolic enzymes. | 0.905 |
glnB | glnK | b2553 | b0450 | Regulatory protein P-II for glutamine synthetase; P-II indirectly controls the transcription of the glutamine synthetase gene (glnA). P-II prevents NR-II-catalyzed conversion of NR- I to NR-I-phosphate, the transcriptional activator of GlnA. When P-II is uridylylated to P-II-UMP, these events are reversed. When the ratio of Gln to 2-ketoglutarate decreases, P-II is uridylylated to P-II-UMP, which causes the deadenylation of glutamine synthetase by GlnE, so activating the enzyme; Belongs to the P(II) protein family. | Nitrogen assimilation regulatory protein for GlnL, GlnE, and AmtB; P-II indirectly controls the transcription of the glutamine synthetase gene (glnA). P-II prevents NR-II-catalyzed conversion of NR- I to NR-I-phosphate, the transcriptional activator of GlnA. When P-II is uridylylated to P-II-UMP, these events are reversed. When the ratio of Gln to 2-ketoglutarate decreases, P-II is uridylylated to P-II-UMP, which causes the deadenylation of glutamine synthetase by GlnE, so activating the enzyme (By similarity); Belongs to the P(II) protein family. | 0.965 |