STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
aidBDNA alkylation damage repair protein; Part of the adaptive DNA-repair response to alkylating agents. Could prevent alkylation damage by protecting DNA and destroying alkylating agents that have yet to reach their DNA target. Binds to double-stranded DNA with a preference for a DNA region that includes its own promoter. Shows weak isovaleryl-CoA dehydrogenase activity in vitro. (541 aa)    
Predicted Functional Partners:
alkA
3-methyl-adenine DNA glycosylase II; Hydrolysis of the deoxyribose N-glycosidic bond to excise 3- methyladenine, 3-methylguanine, 7-methylguanine, O2-methylthymine, and O2-methylcytosine from the damaged DNA polymer formed by alkylation lesions.
 
  
 0.918
nuoC
NADH:ubiquinone oxidoreductase, fused CD subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the C-terminal section; belongs to the complex I 49 kDa subunit family.
   
 0.904
fadJ
enoyl-CoA hydratase/epimerase and isomerase/3-hydroxyacyl-CoA dehydrogenase; Catalyzes the formation of a hydroxyacyl-CoA by addition of water on enoyl-CoA. Also exhibits 3-hydroxyacyl-CoA epimerase and 3- hydroxyacyl-CoA dehydrogenase activities. Strongly involved in the anaerobic degradation of long and medium-chain fatty acids in the presence of nitrate and weakly involved in the aerobic degradation of long-chain fatty acids; In the N-terminal section; belongs to the enoyl-CoA hydratase/isomerase family.
 
 0.903
alkB
Oxidative demethylase of N1-methyladenine or N3-methylcytosine DNA lesions; Dioxygenase that repairs alkylated DNA and RNA containing 3- methylcytosine or 1-methyladenine by oxidative demethylation. Has highest activity towards 3-methylcytosine. Has lower activity towards alkylated DNA containing ethenoadenine, and no detectable activity towards 1-methylguanine or 3-methylthymine. Accepts double-stranded and single-stranded substrates. Requires molecular oxygen, alpha- ketoglutarate and iron. Provides extensive resistance to alkylating agents such as MMS and DMS (SN2 agents), but not t [...]
   
  
 0.902
fadB
Enoyl-CoA hydratase/Delta(3)-cis-Delta(2)-trans-enoyl-CoA isomerase/3-hydroxybutyryl-CoA epimerase; Involved in the aerobic and anaerobic degradation of long- chain fatty acids via beta-oxidation cycle. Catalyzes the formation of 3-oxoacyl-CoA from enoyl-CoA via L-3-hydroxyacyl-CoA. It can also use D-3-hydroxyacyl-CoA and cis-3-enoyl-CoA as substrate. In the C-terminal section; belongs to the 3-hydroxyacyl-CoA dehydrogenase family.
 
 0.896
glsA
Putative glutaminase; Protein involved in cellular amino acid catabolic process.
   
 
 0.763
ogt
O-6-alkylguanine-DNA:cysteine-protein methyltransferase; Involved in the cellular defense against the biological effects of O6-methylguanine (O6-MeG) and O4-methylthymine (O4-MeT) in DNA. Repairs the methylated nucleobase in DNA by stoichiometrically transferring the methyl group to a cysteine residue in the enzyme. This is a suicide reaction: the enzyme is irreversibly inactivated.
      
 0.733
ydiR
Putative electron transfer flavoprotein, FAD-binding subunit; May play a role in a redox process; Belongs to the ETF alpha-subunit/FixB family.
 
 0.708
cbpM
Modulator of CbpA co-chaperone; Interacts with CbpA and inhibits both the DnaJ-like co- chaperone activity and the DNA binding activity of CbpA. Together with CbpA, modulates the activity of the DnaK chaperone system. Does not inhibit the co-chaperone activity of DnaJ; Belongs to the CbpM family.
   
    0.707
cbpA
DnaK co-chaperone; DNA-binding protein that preferentially recognizes a curved DNA sequence. It is probably a functional analog of DnaJ; displays overlapping activities with DnaJ, but functions under different conditions, probably acting as a molecular chaperone in an adaptive response to environmental stresses other than heat shock. Lacks autonomous chaperone activity; binds native substrates and targets them for recognition by DnaK. Its activity is inhibited by the binding of CbpM.
   
 
 0.706
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (24%) [HD]