STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
gcvHGlycine cleavage system H protein; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. (130 aa)    
Predicted Functional Partners:
Ddes_0786
TIGRFAM: glycine cleavage system T protein; PFAM: glycine cleavage T protein (aminomethyl transferase); Glycine cleavage T-protein barrel; KEGG: dvu:DVU1684 glycine cleavage system T protein.
 
 0.995
Ddes_0789
KEGG: dvl:Dvul_1652 glycine dehydrogenase subunit 2.
 
 0.987
gcvPA
Glycine dehydrogenase (decarboxylating); The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein.
 
 0.980
Ddes_0151
TIGRFAM: dihydrolipoamide dehydrogenase; PFAM: FAD-dependent pyridine nucleotide-disulphide oxidoreductase; pyridine nucleotide-disulphide oxidoreductase dimerisation region; KEGG: dps:DP0303 dihydrolipoamide dehydrogenase, E3 component.
 
  
 0.964
glyA
Glycine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
  
 
 0.944
Ddes_2347
TIGRFAM: dihydrolipoamide dehydrogenase; PFAM: FAD-dependent pyridine nucleotide-disulphide oxidoreductase; pyridine nucleotide-disulphide oxidoreductase dimerisation region; KEGG: dps:DP0303 dihydrolipoamide dehydrogenase, E3 component.
 
  
 0.936
Ddes_1416
PFAM: FAD-dependent pyridine nucleotide-disulphide oxidoreductase; glucose-inhibited division protein A; pyridine nucleotide-disulphide oxidoreductase dimerisation region; FAD dependent oxidoreductase; KEGG: dvl:Dvul_1653 FAD-dependent pyridine nucleotide-disulphide oxidoreductase.
 
  
 0.929
gcvH-3
Glycine cleavage system H protein; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein.
  
  
 
0.911
gcvH-2
Glycine cleavage system H protein; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein.
  
  
 
0.910
gcvH-4
Glycine cleavage system H protein; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein.
  
  
 
0.906
Your Current Organism:
Desulfovibrio desulfuricans ATCC 27774
NCBI taxonomy Id: 525146
Other names: D. desulfuricans ATCC 27774, Desulfovibrio desulfuricans subsp. desulfuricans str. ATCC 27774
Server load: low (18%) [HD]