STRINGSTRING
dnaA protein (Sulfurospirillum deleyianum) - STRING interaction network
"dnaA" - Chromosomal replication initiator protein DnaA in Sulfurospirillum deleyianum
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
dnaAChromosomal replication initiator protein DnaA; Plays an important role in the initiation and regulation of chromosomal replication. Binds to the origin of replication; it binds specifically double-stranded DNA at a 9 bp consensus (dnaA box)- 5’-TTATC[CA]A[CA]A-3’. DnaA binds to ATP and to acidic phospholipids (441 aa)    
Predicted Functional Partners:
Sdel_0004
DNA polymerase III subunit beta; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3’ to 5’ exonuclease activity. The beta chain is required for initiation of replication once it is clamped onto DNA, it slides freely (bidirectional and ATP- independent) along duplex DNA (355 aa)
 
 
  0.987
Sdel_1595
Replicative DNA helicase; Participates in initiation and elongation during chromosome replication; it exhibits DNA-dependent ATPase activity and contains distinct active sites for ATP binding, DNA binding, and interaction with DnaC protein, primase, and other prepriming proteins (476 aa)
 
 
  0.937
rplB
50S ribosomal protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome (276 aa)
       
 
  0.903
ruvC
Crossover junction endodeoxyribonuclease RuvC; Nuclease that resolves Holliday junction intermediates in genetic recombination. Cleaves the cruciform structure in supercoiled DNA by nicking to strands with the same polarity at sites symmetrically opposed at the junction in the homologous arms and leaves a 5’-terminal phosphate and a 3’-terminal hydroxyl group (157 aa)
         
  0.865
gyrB
DNA gyrase subunit beta; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner (770 aa)
   
   
  0.841
gidA
Glucose inhibited division protein A; NAD-binding protein involved in the addition of a carboxymethylaminomethyl (cmnm) group at the wobble position (U34) of certain tRNAs, forming tRNA-cmnm(5)s(2)U34 (624 aa)
 
 
  0.836
Sdel_1376
Hypothetical protein (183 aa)
       
 
  0.827
gmhA
Phosphoheptose isomerase; Catalyzes the isomerization of sedoheptulose 7-phosphate in D-glycero-D-manno-heptose 7-phosphate (188 aa)
       
 
  0.825
Sdel_0509
parB-like partition protein (284 aa)
 
 
  0.804
topA
DNA topoisomerase I; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA-(5’-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3’-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA super [...] (694 aa)
 
 
  0.788
Your Current Organism:
Sulfurospirillum deleyianum
NCBI taxonomy Id: 525898
Other names: Dehalospirillum, Dehalospirillum Scholz-Muramatsu et al. 2002, Geospirillum, S. deleyianum, S. deleyianum DSM 6946, Sulfurospirillum, Sulfurospirillum deleyianum, Sulfurospirillum deleyianum DSM 6946, Sulfurospirillum deleyianum str. DSM 6946, Sulfurospirillum deleyianum strain DSM 6946
Server load: low (20%) [HD]