node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
SEA29133.1 | clpP | SAMN05660964_01278 | SAMN05660964_03087 | ATP-dependent Clp protease ATP-binding subunit ClpA; Belongs to the ClpA/ClpB family. | ATP-dependent Clp protease, protease subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | 0.986 |
SEA29133.1 | dnaJ | SAMN05660964_01278 | SAMN05660964_01377 | ATP-dependent Clp protease ATP-binding subunit ClpA; Belongs to the ClpA/ClpB family. | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.795 |
SEA29133.1 | groL | SAMN05660964_01278 | SAMN05660964_02927 | ATP-dependent Clp protease ATP-binding subunit ClpA; Belongs to the ClpA/ClpB family. | Chaperonin GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.681 |
SEA29133.1 | grpE | SAMN05660964_01278 | SAMN05660964_01379 | ATP-dependent Clp protease ATP-binding subunit ClpA; Belongs to the ClpA/ClpB family. | Molecular chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...] | 0.849 |
SEA29133.1 | hslU | SAMN05660964_01278 | SAMN05660964_01532 | ATP-dependent Clp protease ATP-binding subunit ClpA; Belongs to the ClpA/ClpB family. | ATP-dependent HslUV protease ATP-binding subunit HslU; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | 0.632 |
SEA29133.1 | htpG | SAMN05660964_01278 | SAMN05660964_02326 | ATP-dependent Clp protease ATP-binding subunit ClpA; Belongs to the ClpA/ClpB family. | Molecular chaperone HtpG; Molecular chaperone. Has ATPase activity. | 0.779 |
SEA29133.1 | lon-2 | SAMN05660964_01278 | SAMN05660964_03755 | ATP-dependent Clp protease ATP-binding subunit ClpA; Belongs to the ClpA/ClpB family. | ATP-dependent Lon protease; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short- lived regulatory proteins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner. | 0.653 |
clpB | clpP | SAMN05660964_02149 | SAMN05660964_03087 | ATP-dependent Clp protease ATP-binding subunit ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. | ATP-dependent Clp protease, protease subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | 0.990 |
clpB | dnaJ | SAMN05660964_02149 | SAMN05660964_01377 | ATP-dependent Clp protease ATP-binding subunit ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.797 |
clpB | groL | SAMN05660964_02149 | SAMN05660964_02927 | ATP-dependent Clp protease ATP-binding subunit ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. | Chaperonin GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.761 |
clpB | grpE | SAMN05660964_02149 | SAMN05660964_01379 | ATP-dependent Clp protease ATP-binding subunit ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. | Molecular chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...] | 0.888 |
clpB | hslU | SAMN05660964_02149 | SAMN05660964_01532 | ATP-dependent Clp protease ATP-binding subunit ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. | ATP-dependent HslUV protease ATP-binding subunit HslU; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | 0.655 |
clpB | htpG | SAMN05660964_02149 | SAMN05660964_02326 | ATP-dependent Clp protease ATP-binding subunit ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. | Molecular chaperone HtpG; Molecular chaperone. Has ATPase activity. | 0.834 |
clpB | lon-2 | SAMN05660964_02149 | SAMN05660964_03755 | ATP-dependent Clp protease ATP-binding subunit ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. | ATP-dependent Lon protease; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short- lived regulatory proteins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner. | 0.653 |
clpP | SEA29133.1 | SAMN05660964_03087 | SAMN05660964_01278 | ATP-dependent Clp protease, protease subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | ATP-dependent Clp protease ATP-binding subunit ClpA; Belongs to the ClpA/ClpB family. | 0.986 |
clpP | clpB | SAMN05660964_03087 | SAMN05660964_02149 | ATP-dependent Clp protease, protease subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | ATP-dependent Clp protease ATP-binding subunit ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. | 0.990 |
clpP | dnaJ | SAMN05660964_03087 | SAMN05660964_01377 | ATP-dependent Clp protease, protease subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.576 |
clpP | ftsH | SAMN05660964_03087 | SAMN05660964_02735 | ATP-dependent Clp protease, protease subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | Cell division protease FtsH; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins; Belongs to the AAA ATPase family. In the central section; belongs to the AAA ATPase family. | 0.424 |
clpP | groL | SAMN05660964_03087 | SAMN05660964_02927 | ATP-dependent Clp protease, protease subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | Chaperonin GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.748 |
clpP | grpE | SAMN05660964_03087 | SAMN05660964_01379 | ATP-dependent Clp protease, protease subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | Molecular chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...] | 0.828 |