STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
clpP-3ATP-dependent Clp protease, protease subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. (218 aa)    
Predicted Functional Partners:
clpX
ATP-dependent Clp protease ATP-binding subunit ClpX; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP.
 0.991
clpP-4
ATP-dependent Clp protease, protease subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family.
 
 
0.981
clpP-2
ATP-dependent Clp protease, protease subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family.
 
 
0.954
SKC74618.1
ATP-dependent Clp protease ATP-binding subunit ClpC; Manually curated; Belongs to the ClpA/ClpB family.
  
 
 0.854
clpB
ATP-dependent Clp protease ATP-binding subunit ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family.
  
 
 0.850
SKC50144.1
Clp amino terminal domain-containing protein, pathogenicity island component.
   
 
 0.815
SKC81483.1
Oligopeptidase B.
   
  
 0.777
grpE
Molecular chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...]
   
 
 0.702
dnaK
Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family.
   
 
 0.686
groL
Chaperonin GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.
 
 
 0.667
Your Current Organism:
Krasilnikoviella flava
NCBI taxonomy Id: 526729
Other names: CC 0387, CC0387, CCTCC AA208024, DSM 21481, JCM 16551, K. flava, Krasilnikoviella flava (Jiang et al. 2009) Nishijima et al. 2017, Promicromonospora flava, Promicromonospora flava Jiang et al. 2009, Promicromonospora sp. CC 0387
Server load: low (22%) [HD]