STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
speDS-adenosylmethionine decarboxylase; Catalyzes the decarboxylation of S-adenosylmethionine to S- adenosylmethioninamine (dcAdoMet), the propylamine donor required for the synthesis of the polyamines spermine and spermidine from the diamine putrescine; Belongs to the prokaryotic AdoMetDC family. Type 2 subfamily. (271 aa)    
Predicted Functional Partners:
speE
Spermidine synthase; Catalyzes the irreversible transfer of a propylamine group from the amino donor S-adenosylmethioninamine (decarboxy-AdoMet) to putrescine (1,4-diaminobutane) to yield spermidine.
 
 0.992
APO44977.1
Spermidine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.972
metK
Methionine adenosyltransferase; Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme.
    
 0.930
speH
S-adenosylmethionine decarboxylase proenzyme; Catalyzes the decarboxylation of S-adenosylmethionine to S- adenosylmethioninamine (dcAdoMet), the propylamine donor required for the synthesis of the polyamines spermine and spermidine from the diamine putrescine; Belongs to the prokaryotic AdoMetDC family. Type 1 subfamily.
  
  
  0.913
APO42716.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
  0.900
APO45198.1
Flagellar motor switch phosphatase FliY; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
    0.730
mtnA
Transposase; Catalyzes the interconversion of methylthioribose-1-phosphate (MTR-1-P) into methylthioribulose-1-phosphate (MTRu-1-P).
 
   
 0.505
APO44551.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.493
mtnD
Acireductone dioxygenase; Catalyzes 2 different reactions between oxygene and the acireductone 1,2-dihydroxy-3-keto-5-methylthiopentene (DHK-MTPene) depending upon the metal bound in the active site. Fe-containing acireductone dioxygenase (Fe-ARD) produces formate and 2-keto-4- methylthiobutyrate (KMTB), the alpha-ketoacid precursor of methionine in the methionine recycle pathway. Ni-containing acireductone dioxygenase (Ni-ARD) produces methylthiopropionate, carbon monoxide and formate, and does not lie on the methionine recycle pathway.
  
   
 0.485
BS614_11445
GNAT family N-acetyltransferase; Structural component of flagellum, the bacterial motility apparatus. Part of the rod structure of flagellar basal body.
       0.473
Your Current Organism:
Paenibacillus xylanexedens
NCBI taxonomy Id: 528191
Other names: DSM 21292, NRRL B-51090, P. xylanexedens, Paenibacillus sp. B22a, Paenibacillus xylanexedens Nelson et al. 2009, strain B22a
Server load: low (10%) [HD]