STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
PflAPyruvate formate-lyase 1-activating enzyme; Activation of pyruvate formate-lyase under anaerobic conditions by generation of an organic free radical, using S- adenosylmethionine and reduced flavodoxin as cosubstrates to produce 5'-deoxy-adenosine; Belongs to the organic radical-activating enzymes family. (271 aa)    
Predicted Functional Partners:
PflB
Formate acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.989
GrcA
Autonomous glycyl radical cofactor GrcA; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
     0.795
OAM16462.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.518
Pta
Phosphate acetyltransferase; Involved in acetate metabolism. In the N-terminal section; belongs to the CobB/CobQ family.
     
 0.503
MaeB
Malic enzyme; NADP-dependent; catalyzes the oxidative decarboxylation of malate to form pyruvate; decarboxylates oxaloacetate; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.478
Your Current Organism:
Eikenella corrodens
NCBI taxonomy Id: 539
Other names: ATCC 23834, Bacteroides corrodens, CCUG 2138, CIP 70.75, DSM 8340, E. corrodens, JCM 12952, LMG 15557, LMG:15557, NCTC 10596, Ristella corrodens
Server load: low (14%) [HD]