STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
aspCaspartate--tRNA(Asn) ligase; Catalyzes the attachment of L-aspartate to tRNA(Asp) in a two-step reaction: L-aspartate is first activated by ATP to form Asp- AMP and then transferred to the acceptor end of tRNA(Asp). (438 aa)    
Predicted Functional Partners:
gltX
glutamate--tRNA ligase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu).
 
 
 0.850
metG
methionine--tRNA ligase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation.
  
 
 0.797
leuS
leucine--tRNA ligase; LeuRS; class-I aminoacyl-tRNA synthetase; charges leucine by linking carboxyl group to alpha-phosphate of ATP and then transfers aminoacyl-adenylate to its tRNA; due to the large number of codons that tRNA(Leu) recognizes, the leucyl-tRNA synthetase does not recognize the anticodon loop of the tRNA, but instead recognition is dependent on a conserved discriminator base A37 and a long arm; an editing domain hydrolyzes misformed products; in Methanothermobacter thermautotrophicus this enzyme associates with prolyl-tRNA synthetase; Derived by automated computational [...]
 
 
 0.769
argS
arginine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family.
 
 
 0.764
ileS
isoleucine--tRNA ligase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 2 subfamily.
 
 
 0.763
proS
proline--tRNA ligase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro).
 
 
 0.747
AMQ18097.1
Transcription elongation factor NusA; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.721
glyS
glycine--tRNA ligase; Catalyzes the attachment of glycine to tRNA(Gly).
 
 
 0.706
AMQ18093.1
2-haloalkanoic acid dehalogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
     0.618
AMQ18099.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
       0.613
Your Current Organism:
Thermococcus peptonophilus
NCBI taxonomy Id: 53952
Other names: ATCC 700098, CIP 104782, DSM 10343, JCM 9653, T. peptonophilus, strain OG-1
Server load: low (14%) [HD]