node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
DOT1 | H4 | A0A4R8QK33 | A0A4R8RI11 | Histone-lysine N-methyltransferase, H3 lysine-79 specific; Histone methyltransferase that specifically methylates histone H3 to form H3K79me. This methylation is required for telomere silencing and for the pachytene checkpoint during the meiotic cell cycle by allowing the recruitment of RAD9 to double strand breaks. Nucleosomes are preferred as substrate compared to free histones. | Histone H4; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. | 0.902 |
DOT1 | SET1 | A0A4R8QK33 | A0A4R8RQE3 | Histone-lysine N-methyltransferase, H3 lysine-79 specific; Histone methyltransferase that specifically methylates histone H3 to form H3K79me. This methylation is required for telomere silencing and for the pachytene checkpoint during the meiotic cell cycle by allowing the recruitment of RAD9 to double strand breaks. Nucleosomes are preferred as substrate compared to free histones. | Histone-lysine N-methyltransferase, H3 lysine-4 specific; Catalytic component of the COMPASS (Set1C) complex that specifically mono-, di- and trimethylates histone H3 to form H3K4me1/2/3, which subsequently plays a role in telomere length maintenance and transcription elongation regulation. | 0.985 |
DOT1 | ash2 | A0A4R8QK33 | A0A4V3HQE8 | Histone-lysine N-methyltransferase, H3 lysine-79 specific; Histone methyltransferase that specifically methylates histone H3 to form H3K79me. This methylation is required for telomere silencing and for the pachytene checkpoint during the meiotic cell cycle by allowing the recruitment of RAD9 to double strand breaks. Nucleosomes are preferred as substrate compared to free histones. | Set1 complex component ash2. | 0.439 |
DOT1 | hH2Az | A0A4R8QK33 | A0A4R8RKI7 | Histone-lysine N-methyltransferase, H3 lysine-79 specific; Histone methyltransferase that specifically methylates histone H3 to form H3K79me. This methylation is required for telomere silencing and for the pachytene checkpoint during the meiotic cell cycle by allowing the recruitment of RAD9 to double strand breaks. Nucleosomes are preferred as substrate compared to free histones. | Histone H2A; Belongs to the histone H2A family. | 0.412 |
DOT1 | hhfB | A0A4R8QK33 | A0A4R8RP11 | Histone-lysine N-methyltransferase, H3 lysine-79 specific; Histone methyltransferase that specifically methylates histone H3 to form H3K79me. This methylation is required for telomere silencing and for the pachytene checkpoint during the meiotic cell cycle by allowing the recruitment of RAD9 to double strand breaks. Nucleosomes are preferred as substrate compared to free histones. | Histone H4; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. | 0.951 |
DOT1 | set3 | A0A4R8QK33 | A0A4R8RKA3 | Histone-lysine N-methyltransferase, H3 lysine-79 specific; Histone methyltransferase that specifically methylates histone H3 to form H3K79me. This methylation is required for telomere silencing and for the pachytene checkpoint during the meiotic cell cycle by allowing the recruitment of RAD9 to double strand breaks. Nucleosomes are preferred as substrate compared to free histones. | SET domain-containing protein 3. | 0.718 |
DOT1 | set5-5 | A0A4R8QK33 | A0A4V3HVZ4 | Histone-lysine N-methyltransferase, H3 lysine-79 specific; Histone methyltransferase that specifically methylates histone H3 to form H3K79me. This methylation is required for telomere silencing and for the pachytene checkpoint during the meiotic cell cycle by allowing the recruitment of RAD9 to double strand breaks. Nucleosomes are preferred as substrate compared to free histones. | SET domain-containing protein 5. | 0.641 |
H4 | DOT1 | A0A4R8RI11 | A0A4R8QK33 | Histone H4; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. | Histone-lysine N-methyltransferase, H3 lysine-79 specific; Histone methyltransferase that specifically methylates histone H3 to form H3K79me. This methylation is required for telomere silencing and for the pachytene checkpoint during the meiotic cell cycle by allowing the recruitment of RAD9 to double strand breaks. Nucleosomes are preferred as substrate compared to free histones. | 0.902 |
H4 | HAT2 | A0A4R8RI11 | A0A4R8RFJ5 | Histone H4; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. | Histone acetyltransferase type B subunit 2. | 0.970 |
H4 | SET1 | A0A4R8RI11 | A0A4R8RQE3 | Histone H4; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. | Histone-lysine N-methyltransferase, H3 lysine-4 specific; Catalytic component of the COMPASS (Set1C) complex that specifically mono-, di- and trimethylates histone H3 to form H3K4me1/2/3, which subsequently plays a role in telomere length maintenance and transcription elongation regulation. | 0.952 |
H4 | ash2 | A0A4R8RI11 | A0A4V3HQE8 | Histone H4; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. | Set1 complex component ash2. | 0.946 |
H4 | eed-b | A0A4R8RI11 | A0A4R8PPQ7 | Histone H4; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. | Polycomb protein eed-B. | 0.811 |
H4 | hH2Az | A0A4R8RI11 | A0A4R8RKI7 | Histone H4; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. | Histone H2A; Belongs to the histone H2A family. | 0.976 |
H4 | set3 | A0A4R8RI11 | A0A4R8RKA3 | Histone H4; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. | SET domain-containing protein 3. | 0.607 |
H4 | set5-5 | A0A4R8RI11 | A0A4V3HVZ4 | Histone H4; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. | SET domain-containing protein 5. | 0.634 |
H4 | swd1 | A0A4R8RI11 | A0A4R8RSB5 | Histone H4; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. | Set1 complex component swd1. | 0.956 |
HAT2 | H4 | A0A4R8RFJ5 | A0A4R8RI11 | Histone acetyltransferase type B subunit 2. | Histone H4; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. | 0.970 |
HAT2 | SET1 | A0A4R8RFJ5 | A0A4R8RQE3 | Histone acetyltransferase type B subunit 2. | Histone-lysine N-methyltransferase, H3 lysine-4 specific; Catalytic component of the COMPASS (Set1C) complex that specifically mono-, di- and trimethylates histone H3 to form H3K4me1/2/3, which subsequently plays a role in telomere length maintenance and transcription elongation regulation. | 0.720 |
HAT2 | eed-b | A0A4R8RFJ5 | A0A4R8PPQ7 | Histone acetyltransferase type B subunit 2. | Polycomb protein eed-B. | 0.986 |
HAT2 | hH2Az | A0A4R8RFJ5 | A0A4R8RKI7 | Histone acetyltransferase type B subunit 2. | Histone H2A; Belongs to the histone H2A family. | 0.830 |