STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
grpEMolecular chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...] (218 aa)    
Predicted Functional Partners:
dnaK
Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family.
 
 0.999
dnaJ-2
Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...]
 
 
 0.995
dnaJ
Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...]
 
 
 0.985
hrcA
Heat-inducible transcription repressor HrcA; Negative regulator of class I heat shock genes (grpE-dnaK- dnaJ and groELS operons). Prevents heat-shock induction of these operons.
  
  
 0.979
groS
Chaperonin GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter.
 
 
 0.960
groL
Chaperonin GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.
 
 0.955
groL-2
Chaperonin GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.
 
 0.954
SDT37475.1
MerR family transcriptional regulator, heat shock protein HspR.
  
  
 0.936
SDT35649.1
Hypothetical protein.
 
 0.913
SDS27999.1
MerR HTH family regulatory protein.
  
  
 0.873
Your Current Organism:
Friedmanniella luteola
NCBI taxonomy Id: 546871
Other names: DSM 21741, F. luteola, Friedmanniella luteola Iwai et al. 2010, Friedmanniella sp. FA1, NBRC 104963, strain FA1
Server load: low (20%) [HD]