STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
apm2_1AP-2 complex subunit mu; Belongs to the adaptor complexes medium subunit family. (464 aa)    
Predicted Functional Partners:
APS2_0
AP complex subunit sigma; Belongs to the adaptor complexes small subunit family.
  
 0.999
APL3_0
AP-2 complex subunit alpha; Adaptins are components of the adaptor complexes which link clathrin to receptors in coated vesicles. Clathrin-associated protein complexes are believed to interact with the cytoplasmic tails of membrane proteins, leading to their selection and concentration.
   
 0.998
APL3_1
AP-2 complex subunit alpha; Adaptins are components of the adaptor complexes which link clathrin to receptors in coated vesicles. Clathrin-associated protein complexes are believed to interact with the cytoplasmic tails of membrane proteins, leading to their selection and concentration.
   
 0.998
ap1b1_0
AP complex subunit beta; Adaptins are components of the adaptor complexes which link clathrin to receptors in coated vesicles. Clathrin-associated protein complexes are believed to interact with the cytoplasmic tails of membrane proteins, leading to their selection and concentration.
   
 0.984
ap1b1_1
AP complex subunit beta; Adaptins are components of the adaptor complexes which link clathrin to receptors in coated vesicles. Clathrin-associated protein complexes are believed to interact with the cytoplasmic tails of membrane proteins, leading to their selection and concentration.
   
 0.984
Cantr_06125
Uncharacterized protein.
    
 0.967
Cantr_00371
Uncharacterized protein.
    
 0.967
APL2_1
AP complex subunit beta; Adaptins are components of the adaptor complexes which link clathrin to receptors in coated vesicles. Clathrin-associated protein complexes are believed to interact with the cytoplasmic tails of membrane proteins, leading to their selection and concentration.
   
 0.961
APL2_0
AP complex subunit beta; Adaptins are components of the adaptor complexes which link clathrin to receptors in coated vesicles. Clathrin-associated protein complexes are believed to interact with the cytoplasmic tails of membrane proteins, leading to their selection and concentration.
   
 0.961
CLC1
Clathrin light chain; Clathrin is the major protein of the polyhedral coat of coated pits and vesicles; Belongs to the clathrin light chain family.
   
 0.943
Your Current Organism:
Candida viswanathii
NCBI taxonomy Id: 5486
Other names: ATCC 22981, C. viswanathii, CBS 4024, CCRC 21330, CCRC:21330, Candida lodderae, Candida viswanathii Viswanathan & H.S. Randhawa ex R.S. Sandhu & H.S. Randhawa, 2015, DBVPG 6189, IFO 10321, JCM 9567, NRRL Y-6660
Server load: low (26%) [HD]