STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Cantr_07580Very-long-chain 3-oxoacyl-CoA reductase; Component of the microsomal membrane bound fatty acid elongation system, which produces the 26-carbon very long-chain fatty acids (VLCFA) from palmitate. Catalyzes the reduction of the 3- ketoacyl-CoA intermediate that is formed in each cycle of fatty acid elongation. VLCFAs serve as precursors for ceramide and sphingolipids. (353 aa)    
Predicted Functional Partners:
Cantr_05000
S5A_REDUCTASE domain-containing protein.
   
 0.988
Cantr_08646
S5A_REDUCTASE domain-containing protein.
   
 0.988
PHS1_0
Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase; Catalyzes the third of the four reactions of the long-chain fatty acids elongation cycle. This endoplasmic reticulum-bound enzymatic process, allows the addition of two carbons to the chain of long- and very long-chain fatty acids/VLCFAs per cycle. This enzyme catalyzes the dehydration of the 3-hydroxyacyl-CoA intermediate into trans-2,3-enoyl-CoA, within each cycle of fatty acid elongation. Thereby, it participates to the production of VLCFAs of different chain lengths that are involved in multiple biological processes as precursors [...]
   
 0.975
OLE1_2
Acyl-CoA desaturase; Stearyl-CoA desaturase that utilizes O(2) and electrons from reduced cytochrome b5 to introduce the first double bond into saturated fatty acyl-CoA substrates.
  
 0.956
OLE1_0
Acyl-CoA desaturase; Stearyl-CoA desaturase that utilizes O(2) and electrons from reduced cytochrome b5 to introduce the first double bond into saturated fatty acyl-CoA substrates.
  
 0.956
OLE1_1
Acyl-CoA desaturase; Stearyl-CoA desaturase that utilizes O(2) and electrons from reduced cytochrome b5 to introduce the first double bond into saturated fatty acyl-CoA substrates.
  
 0.956
hpo-8_0
Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase; Catalyzes the third of the four reactions of the long-chain fatty acids elongation cycle. This endoplasmic reticulum-bound enzymatic process, allows the addition of two carbons to the chain of long- and very long-chain fatty acids/VLCFAs per cycle. This enzyme catalyzes the dehydration of the 3-hydroxyacyl-CoA intermediate into trans-2,3-enoyl-CoA, within each cycle of fatty acid elongation. Thereby, it participates to the production of VLCFAs of different chain lengths that are involved in multiple biological processes as precursors [...]
   
 0.954
hpo-8_1
Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase; Catalyzes the third of the four reactions of the long-chain fatty acids elongation cycle. This endoplasmic reticulum-bound enzymatic process, allows the addition of two carbons to the chain of long- and very long-chain fatty acids/VLCFAs per cycle. This enzyme catalyzes the dehydration of the 3-hydroxyacyl-CoA intermediate into trans-2,3-enoyl-CoA, within each cycle of fatty acid elongation. Thereby, it participates to the production of VLCFAs of different chain lengths that are involved in multiple biological processes as precursors [...]
   
 0.954
ELO2_1
Elongation of fatty acids protein.
   
 0.907
ELO2_3
Elongation of fatty acids protein.
   
 0.907
Your Current Organism:
Candida viswanathii
NCBI taxonomy Id: 5486
Other names: ATCC 22981, C. viswanathii, CBS 4024, CCRC 21330, CCRC:21330, Candida lodderae, Candida viswanathii Viswanathan & H.S. Randhawa ex R.S. Sandhu & H.S. Randhawa, 2015, DBVPG 6189, IFO 10321, JCM 9567, NRRL Y-6660
Server load: low (30%) [HD]