STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
lexARepressor LexA; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. Binds to the 16 bp palindromic sequence 5'-CTGTATATATATACAG-3'. In the presence of single- stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. (204 aa)    
Predicted Functional Partners:
recA
Recombinase RecA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family.
  
 
 0.934
dgkA
Diacylglycerol kinase; Recycling of diacylglycerol produced during the turnover of membrane phospholipid.
      0.845
dinI
DNA damage-inducible protein I; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
  
 0.733
AOE39813.1
MATE family efflux transporter DinF; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.650
AOE41587.1
Acyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
  
 0.612
sulA
Cell division inhibitor SulA; Component of the SOS system and an inhibitor of cell division. Accumulation of SulA causes rapid cessation of cell division and the appearance of long, non-septate filaments. In the presence of GTP, binds a polymerization-competent form of FtsZ in a 1:1 ratio, thus inhibiting FtsZ polymerization and therefore preventing it from participating in the assembly of the Z ring. This mechanism prevents the premature segregation of damaged DNA to daughter cells during cell division.
 
  
 0.555
recN_2
DNA repair protein RecN; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
  
 0.532
umuC_1
DNA polymerase V subunit UmuC; Binds processed UmuD protein to form functional DNA pol V (UmuD'2UmuC); involved in translesion polymerization; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.500
AOE39958.1
DNA polymerase V subunit UmuC; Binds processed UmuD protein to form functional DNA pol V (UmuD'2UmuC); involved in translesion polymerization; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.498
plsB_1
Glycerol-3-phosphate 1-O-acyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPAT/DAPAT family.
     
 0.457
Your Current Organism:
Pantoea agglomerans
NCBI taxonomy Id: 549
Other names: ATCC 27155, Bacillus milletiae, Bacterium herbicola, CCUG 539, CFBP 3845, CIP 57.51, DSM 3493, Enterobacter agglomerans, Erwinia herbicola, Erwinia milletiae, ICMP 12534, ICPB 3435, NBRC 102470, NCTC 9381, P. agglomerans, Pantoea herbicola, Pantoea sp. SL1_M5, Pseudomonas herbicola, bacterium G33-1
Server load: low (20%) [HD]