STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AOE41040.1EscN/YscN/HrcN family type III secretion system ATPase; Derived by automated computational analysis using gene prediction method: Protein Homology. (454 aa)    
Predicted Functional Partners:
AOE41042.1
EscV/YscV/HrcV family type III secretion system export apparatus protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.980
fliN
Flagellar motor switch protein FliN; FliN is one of three proteins (FliG, FliN, FliM) that form the rotor-mounted switch complex (C ring), located at the base of the basal body. This complex interacts with the CheY and CheZ chemotaxis proteins, in addition to contacting components of the motor that determine the direction of flagellar rotation. Belongs to the FliN/MopA/SpaO family.
 
 
 0.962
flhA
Flagellar protein flhE; Required for formation of the rod structure of the flagellar apparatus. Together with FliI and FliH, may constitute the export apparatus of flagellin; Belongs to the FHIPEP (flagella/HR/invasion proteins export pore) family.
 
 
 0.947
flhB
Flagellar biosynthesis protein FlhB; Required for formation of the rod structure in the basal body of the flagellar apparatus. Together with FliI and FliH, may constitute the export apparatus of flagellin; Belongs to the type III secretion exporter family.
 
 
 0.946
fliP
Flagellar biosynthetic protein FliP; Plays a role in the flagellum-specific transport system. Belongs to the FliP/MopC/SpaP family.
 
  
 0.939
flgC
Flagellar basal body rod protein FlgC; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the flagella basal body rod proteins family.
 
  
 0.938
fliQ
Flagellar export apparatus protein FliQ; Role in flagellar biosynthesis. Belongs to the FliQ/MopD/SpaQ family.
 
  
 0.930
AOE41041.1
Type III secretion protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.923
fliG
Flagellar motor switch protein FliG; FliG is one of three proteins (FliG, FliN, FliM) that forms the rotor-mounted switch complex (C ring), located at the base of the basal body. This complex interacts with the CheY and CheZ chemotaxis proteins, in addition to contacting components of the motor that determine the direction of flagellar rotation.
 
 0.912
AOE41728.1
Flagellar assembly protein FliH; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.909
Your Current Organism:
Pantoea agglomerans
NCBI taxonomy Id: 549
Other names: ATCC 27155, Bacillus milletiae, Bacterium herbicola, CCUG 539, CFBP 3845, CIP 57.51, DSM 3493, Enterobacter agglomerans, Erwinia herbicola, Erwinia milletiae, ICMP 12534, ICPB 3435, NBRC 102470, NCTC 9381, P. agglomerans, Pantoea herbicola, Pantoea sp. SL1_M5, Pseudomonas herbicola, bacterium G33-1
Server load: low (24%) [HD]