STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
hisCHistidinol-phosphate aminotransferase; Catalyzes the formation of L-histidinol phosphate from imidazole-acetol phosphate and glutamate in histidine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. Histidinol-phosphate aminotransferase subfamily. (364 aa)    
Predicted Functional Partners:
hisI
phosphoribosyl-ATP pyrophosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology; In the N-terminal section; belongs to the PRA-CH family.
 
  
 0.999
hisB
Imidazoleglycerol-phosphate dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.999
KQL49308.1
Prephenate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.997
hisD
Histidinol dehydrogenase; Catalyzes the sequential NAD-dependent oxidations of L- histidinol to L-histidinaldehyde and then to L-histidine.
 
 0.994
pheA
Prephenate dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.957
KQL49148.1
D-alanine aminotransferase; Acts on the D-isomers of alanine, leucine, aspartate, glutamate, aminobutyrate, norvaline and asparagine. The enzyme transfers an amino group from a substrate D-amino acid to the pyridoxal phosphate cofactor to form pyridoxamine and an alpha-keto acid in the first half-reaction.
   
 
 0.957
KQL45679.1
4-hydroxyphenylpyruvate dioxygenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.949
trpA
Tryptophan synthase subunit alpha; The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate. Belongs to the TrpA family.
  
  
 0.945
hisH
Imidazole glycerol phosphate synthase subunit HisH; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisH subunit catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the synthesis of IGP and AICAR. The resulting ammonia molecule is channeled to the active site of HisF.
 
 
 0.941
trpD
Anthranilate phosphoribosyltransferase; Catalyzes the transfer of the phosphoribosyl group of 5- phosphorylribose-1-pyrophosphate (PRPP) to anthranilate to yield N-(5'- phosphoribosyl)-anthranilate (PRA).
  
  
 0.940
Your Current Organism:
Brevibacillus choshinensis
NCBI taxonomy Id: 54911
Other names: ATCC 51359, B. choshinensis, Bacillus choshinensis, CIP 103838, DSM 8552, IFO 15518, JCM 8505, LMG 15968, LMG:15968, NBRC 15518, NCIMB 13345, NRRL B-23247, strain HPD52
Server load: low (28%) [HD]