node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
KQL46521.1 | KQL47255.1 | AN963_16470 | AN963_15205 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Cytochrome B; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | 0.975 |
KQL46521.1 | atpA | AN963_16470 | AN963_16840 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP F0F1 synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | 0.991 |
KQL46521.1 | atpB | AN963_16470 | AN963_16860 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. | 0.989 |
KQL46521.1 | atpC | AN963_16470 | AN963_16825 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase F1 subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane. | 0.991 |
KQL46521.1 | atpD | AN963_16470 | AN963_16830 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP F0F1 synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. | 0.991 |
KQL46521.1 | atpE | AN963_16470 | AN963_16855 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase F0F1 subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.990 |
KQL46521.1 | atpF | AN963_16470 | AN963_16850 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase F0F1 subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. | 0.982 |
KQL46521.1 | atpH | AN963_16470 | AN963_16845 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | ATP synthase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.990 |
KQL46521.1 | nuoC | AN963_16470 | AN963_16805 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH-quinone oxidoreductase subunit C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. | 0.833 |
KQL46521.1 | rplP | AN963_16470 | AN963_20025 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 50S ribosomal protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. | 0.826 |
KQL47255.1 | KQL46521.1 | AN963_15205 | AN963_16470 | Cytochrome B; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.975 |
KQL47255.1 | atpA | AN963_15205 | AN963_16840 | Cytochrome B; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | ATP F0F1 synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | 0.997 |
KQL47255.1 | atpB | AN963_15205 | AN963_16860 | Cytochrome B; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | ATP synthase subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. | 0.865 |
KQL47255.1 | atpC | AN963_15205 | AN963_16825 | Cytochrome B; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | ATP synthase F1 subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane. | 0.983 |
KQL47255.1 | atpD | AN963_15205 | AN963_16830 | Cytochrome B; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | ATP F0F1 synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. | 0.984 |
KQL47255.1 | atpE | AN963_15205 | AN963_16855 | Cytochrome B; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | ATP synthase F0F1 subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.956 |
KQL47255.1 | atpF | AN963_15205 | AN963_16850 | Cytochrome B; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | ATP synthase F0F1 subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. | 0.552 |
KQL47255.1 | atpH | AN963_15205 | AN963_16845 | Cytochrome B; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | ATP synthase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.995 |
KQL47255.1 | nuoC | AN963_15205 | AN963_16805 | Cytochrome B; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | NADH-quinone oxidoreductase subunit C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. | 0.999 |
atpA | KQL46521.1 | AN963_16840 | AN963_16470 | ATP F0F1 synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.991 |