STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
gyrBDNA gyrase, B subunit; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. (817 aa)    
Predicted Functional Partners:
parC
DNA topoisomerase IV, A subunit; Topoisomerase IV is essential for chromosome segregation. It relaxes supercoiled DNA. Performs the decatenation events required during the replication of a circular DNA molecule; Belongs to the type II topoisomerase GyrA/ParC subunit family. ParC type 1 subfamily.
 
 0.998
gyrA
DNA gyrase, A subunit; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner.
 
 0.996
ACX94868.1
DNA polymerase III, beta subunit; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...]
 
 0.889
dnaJ
Chaperone protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, D [...]
  
  
 0.885
rpoB
DNA-directed RNA polymerase, beta subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
  
  
 0.883
recF
DNA replication and repair protein RecF; The RecF protein is involved in DNA metabolism; it is required for DNA replication and normal SOS inducibility. RecF binds preferentially to single-stranded, linear DNA. It also seems to bind ATP.
 
  
 0.881
rpoD
RNA polymerase, sigma 70 subunit, RpoD; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth.
 
 
 0.880
ACX97098.1
PFAM: ferredoxin-dependent glutamate synthase; glutamate synthase alpha subunit domain protein; glutamate synthase; glutamine amidotransferase class-II; KEGG: tgr:Tgr7_3033 glutamate synthase (ferredoxin).
     
 0.858
pdxA
4-hydroxythreonine-4-phosphate dehydrogenase; Catalyzes the NAD(P)-dependent oxidation of 4-(phosphooxy)-L- threonine (HTP) into 2-amino-3-oxo-4-(phosphooxy)butyric acid which spontaneously decarboxylates to form 3-amino-2-oxopropyl phosphate (AHAP).
 
      0.797
rpoS
RNA polymerase, sigma 70 subunit, RpoD subfamily; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the master transcriptional regulator of the stationary phase and the general stress response.
 
 
 0.789
Your Current Organism:
Halothiobacillus neapolitanus
NCBI taxonomy Id: 555778
Other names: H. neapolitanus c2, Halothiobacillus neapolitanus ATCC 23641, Halothiobacillus neapolitanus c2, Halothiobacillus neapolitanus str. c2, Halothiobacillus neapolitanus strain c2
Server load: low (20%) [HD]