STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
APF39995.1Ribose-5-phosphate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology. (157 aa)    
Predicted Functional Partners:
APF39805.1
Ribulose-phosphate 3-epimerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribulose-phosphate 3-epimerase family.
 
 
 0.945
tal
Transaldolase; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway; Belongs to the transaldolase family. Type 2 subfamily.
 
  
 0.938
APF40182.1
Transketolase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the transketolase family.
  
 
 0.932
APF40184.1
Glucose-6-phosphate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPI family.
    
 0.926
prs
Ribose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily.
    
 0.923
APF39976.1
Phosphogluconate dehydrogenase (NADP(+)-dependent, decarboxylating); Catalyzes the oxidative decarboxylation of 6-phosphogluconate to ribulose 5-phosphate and CO(2), with concomitant reduction of NADP to NADPH.
    
 0.919
APF41836.1
6-phosphogluconate dehydrogenase (decarboxylating); Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.914
upp
Uracil phosphoribosyltransferase; Catalyzes the conversion of uracil and 5-phospho-alpha-D- ribose 1-diphosphate (PRPP) to UMP and diphosphate.
 
  
 0.910
APF40944.1
Phosphoglucomutase, alpha-D-glucose phosphate-specific; Catalyzes the interconversion of alpha-D-glucose 1-phosphate to alpha-D-glucose 6-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
  0.900
pdxS
Pyridoxal biosynthesis lyase PdxS; Catalyzes the formation of pyridoxal 5'-phosphate from ribose 5-phosphate (RBP), glyceraldehyde 3-phosphate (G3P) and ammonia. The ammonia is provided by the PdxT subunit. Can also use ribulose 5- phosphate and dihydroxyacetone phosphate as substrates, resulting from enzyme-catalyzed isomerization of RBP and G3P, respectively. Belongs to the PdxS/SNZ family.
   
 
  0.800
Your Current Organism:
Neomicrococcus aestuarii
NCBI taxonomy Id: 556325
Other names: JCM 16364, KCTC 19557, Micrococcus sp. DY66, N. aestuarii, NBRC 109060, Neomicrococcus aestuarii (Baik et al. 2011) Prakash et al. 2015, Zhihengliuella aestuarii, Zhihengliuella aestuarii Baik et al. 2011, strain DY66
Server load: low (18%) [HD]